
Discrete-event simulation system Delsi 1.1

Copyright © 1996-2002, Herman Holushko

Programmer's Guide

Delsi 1.1. Getting Started

2

INTRODUCTION.. 3
Sample 1. Barbershop. The Simplest model... 4
Sample 2. Input parameters and progress status... 5
Sample 3. Clearing statistics during simulation run ... 6
Sample 4. Experiments with changing parameters... 7
Sample 5. Tracing... 8
Sample 6. Limited queue capacity and routing .. 9
Sample 7. Limited waiting in the queue ... 10
Sample 8. Changing the parameters during simulation run.. 11
Sample 9. Using TCreator component ... 12
Sample 10. Using TStorage component ... 13
Sample 11. Failures and recovers, component TGate, method TServer.Release 14
Sample 12. Routing that depends on the state of blocks. Transaction fields. Tabulation. 15
Sample 13. TDivider and TAssembler ... 17
Sample 14. Using priorities with TQueuePrty component... 18
Sample 15. Preempted and postponed service.. 19
Sample 16. Passing preempted low-priority transactions... 20
Sample 17. Preempting in TQueuePrty .. 21
Sample 18. Preempting in TStoragePrty .. 23
Sample 19. Multiple forms ... 24

Delsi 1.1. Getting Started

3

INTRODUCTION

The best way to study Delsi is to works with examples. This document contains the comments to 19
simulation applications developed in Delphi™ using Delsi components. Going from the first to the
nineteenth sample you will get step-by-step explanation of the most common aspects of
Delsi simulation.

Delsi 1.1. Getting Started

4

Sample 1. Barbershop. The Simplest model

This example is the first in the well-known Red Book of Thomas J. Schriber "Simulation
Using GPSS". Let's imagine a barbershop with one barber and the hall for waiting customers.
Customers arrive to the shop. If the barber is busy they wait in the hall. They go for the service with
discipline "First come - first served" (FIFO). After service they leave the barbershop.

We can describe arrival and service time intervals with help of probability distributions. These
are input parameters for our model.

The arrival time is uniformly distributed in the range 12...24 min.
The service time is uniformly distributed in the range 14...20 min.
The total time of simulation is 480 min.

We are interested to determine the following values:

• Usage of the barber
• Average queue length
• Maximal queue length
• Average waiting time
• Deviation of waiting time
• Average waiting time for transactions with zero time spent in the queue
• Deviation of waiting time for transactions with zero time spent in the queue

The components for the building model:

Entrance TGenerator Arrival of customers
Hall TQueue Waiting for service with FIFO discipline
Barber TServer Serving by barber
ExitDoor TTerminator Leaving the barbershop

For the simplicity we output results into TMemo component. Actually, you can output the

results wherever you want: to ASCII file, database, canvas, QuickReport, HTML, etc.
To make the model ready for the new simulation start-up we use TModel.Reset method:

procedure TForm1.Button1Click(Sender: TObject);
begin

 Model.Simulate(SimTime);

 Model.Reset;
end;

The results of simulation are the following.

Usage of the barber: 0,92
Average queue length: 0,07
Maximal queue length: 1
Average waiting time: 1,33
Deviation of waiting time: 1,82
Average waiting time / excluding zero times: 3,03
Deviation of waiting time/ excluding zero times: 1,56

Delsi 1.1. Getting Started

5

Sample 2. Input parameters and progress status

This sample is interesting by the editing of input parameters and using progress status line. We
repeat model scheme of Sample 1. The arrival and service intervals are exponentially distributed. We
edit input parameters and simulation time with help of TEdit components.

For viewing simulation progress we use TProgressBar component.
For changing TProgressBar.Position property we use the event Model.OnNewTime.
This event is initialized when new model time is taken from the List of Future Events.

The source code for event handling is the following.

procedure TForm1.ModelNewTime(Sender: TAggregate; Trans: TTransaction);
 var NewPos: integer;
 Ratio: real;
begin
 Ratio:=ModelTime/SimTime;
 if Ratio>1.0 then Ratio:=1.0;
 NewPos:=Round(Ratio*100.0);
 with ProgressBar do
 if Position<>NewPos then Position:=NewPos;
end;

If you want to use the same sequence of random numbers in each simulation run, do it with

TMultiRand.Reset method.

Delsi 1.1. Getting Started

6

Sample 3. Clearing statistics during simulation run

This sample demonstrates how to clear statistics during simulation run. It may be useful when
you want to define the transient of output parameters.

We use OnPlanned event of TScheduler component for:

• printing results into Memo
• clearing statistics
• ordering the next event for TScheduler

The source code for event handling is the following.

procedure TForm1.Scheduler1Planned(Sender: TAggregate);
begin
 Memo.Lines.Add('Avarage time in the queue: '+
 FormatFloat('0.000',Hall.AverageTime)+' '+
 FormatFloat('0.00',ModelTime));
 Model.ClearStatistics;
 Sender.NextTime(ClearTime);
end;

The arrival and service time are uniformly distributed.

The example of simulation results is the following.

Average time in the queue: 2,735 10000,00
Average time in the queue: 2,500 20000,00
Average time in the queue: 2,094 30000,00
Average time in the queue: 2,070 40000,00
Average time in the queue: 2,348 50000,00
Average time in the queue: 2,430 60000,00
Average time in the queue: 2,140 70000,00
Average time in the queue: 2,525 80000,00
Average time in the queue: 2,431 90000,00
Average time in the queue: 2,804 100000,00

Delsi 1.1. Getting Started

7

Sample 4. Experiments with changing parameters

This sample demonstrates an experiment management. In this sample the arrival and service
time are exponentially distributed. The mean of service time is 10.0. The mean of arrival time changes
from 10.0 to 15.0 with step 1.0.

We need to estimate how the average queue length depends on the average arrival time.

The source code of experiment management:

ArrivalTime:=10.0;
ServiceTime:=10.0;
Memo.Lines.Clear;
for i:=0 to 5 do
begin
 Model.Simulate(LimitTime);
 Memo.Lines.Add('Average arrival time'+FormatFloat('0.00',ArrivalTime)+
 ' Average queue length: '+
 FormatFloat('0.00',Hall.AverageCount));
 Model.Reset;
 ArrivalTime:=ArrivalTime+1.0;
end;

The results of experiment for simulation time 1000.0

Average arrival time: 10,00 Average queue length: 6,88
Average arrival time: 11,00 Average queue length: 2,43
Average arrival time: 12,00 Average queue length: 3,12
Average arrival time: 13,00 Average queue length: 1,06
Average arrival time: 14,00 Average queue length: 1,07
Average arrival time: 15,00 Average queue length: 0,63

Delsi 1.1. Getting Started

8

Sample 5. Tracing

In this sample we repeat the model of Sample 1. The only thing we demonstrate here is how to
trace the simulation process. To trace the transaction passing from one block to another we use the
event OnAfterPass of TModel component.

The source code of event handling is the following.

procedure TForm1.ModelAfterPass(Sender, Receiver: TBlock; Trans: TTransaction);
begin
 Memo.Lines.Add(PadCh(Sender.Name,' ',12)+ // Name of Sender
 PadCh(Receiver.Name,' ',12)+ // Name of Receiver
 PadCh(IntToStr(Trans.GetTransID),' ',6)+ // Transaction ID
 FormatFloat('0.00',ModelTime)); // System time
end;

The result of tracing looks like this:

Entrance Hall 1 0,00
Hall Barber 1 0,00
Barber ExitDoor 1 14,50
Entrance Hall 1 20,49 // The second life of Transaction 1
Hall Barber 1 20,49
Barber ExitDoor 1 34,79
Entrance Hall 1 41,89
Hall Barber 1 41,89
Barber ExitDoor 1 60,08
Entrance Hall 1 64,48 // The third life of Transaction 1
Hall Barber 1 64,48
Entrance Hall 2 79,40
Barber ExitDoor 1 80,94
Hall Barber 2 80,94
Barber ExitDoor 2 96,11
Entrance Hall 2 96,44 // The second life of Transaction 2
Hall Barber 2 96,44
Entrance Hall 1 112,58

From these tracing results you can see that each transaction can be used several times. It looks

like the transactions may have several lives per simulation run. But each transaction in each moment of
model time has unique ID.

By use of OnAfterPass and OnNewTime events you can create more sophisticated tracing, for
instance, with the queue lengths, transaction priorities or something else. Of course, you can customize
the look and feel of the output.

Delsi 1.1. Getting Started

9

Sample 6. Limited queue capacity and routing

Let's take in consideration that number of chairs in the hall is limited. If the customer finds out
that all chairs are busy she goes to another barbershop.

The arrival time is exponentially distributed with the mean equal to 11.0.
The service time is exponentially distributed with the mean equal to10.0.
We need to estimate the percentage of lost customers.

We define the capacity of queue in the property Capacity of TQueue component. We can do it

in Object Inspector or directly in source code just like in this sample.

Hall.Capacity:=QCapacity;

If the number of transactions in the queue is equal to the capacity, the queue becomes not

ready to receive transactions. We use this fact to route transactions.

procedure TForm1.EntranceRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Hall.isReadyToReceive(Trans) then
 Sender.PassTo(Hall)
 else
 Sender.PassTo(AnotherShop);
end;

After the simulation run it is very easy to calculate the percentage of the lost customers.

Memo.Lines.Add('Percent of lost customers: '+
 FormatFloat('0.00',AnotherShop.Entries*100.0/Entrance.Exits)+'%');

The example of simulation results:

Capacity: 5
Total customers: 8990
Lost customers: 936
Percent of lost customers: 10,41%

Delsi 1.1. Getting Started

10

Sample 7. Limited waiting in the queue

In previous sample we have discussed the queue with limited capacity. We repeat that sample
with some addition. Usually, some of customers cannot spend a long time in the queue. Let's imagine
that half of the customers are not ready to spend in the queue more than 20 ... 30 min. (uniformly
distributed). After this period of time they leave the queue.

As it was in previous sample we need to calculate the percentage of lost customers.

To limit the waiting time for some customers we order the limiting time in the OnEnter event
of TQueue component.

procedure TForm1.HallEnter(Sender: TBlock; Trans: TTransaction);
begin
 if MultiRand.Uniform(0.0,1.0) > 0.5 then // only half of customers can’t wait

Sender.NextTime(MultiRand.Uniform(20.0,30.0));
end;

When the waiting time expires, the event OnTimeFinish occurs. We process this event by

passing transaction into terminator NoTime.

procedure TForm1.HallTimeFinish(Sender: TBlock; Trans: TTransaction);
begin
 Sender.Pass(AnotherShop); // Pass to terminator
end;

After simulation run we can calculate results.

Memo.Lines.Add('Total customers: '+IntToStr(Entrance.Exits));
Memo.Lines.Add('Total amount of lost customers: '+IntToStr(AnotherShop.Entries));
Memo.Lines.Add('Lost customers due to limited time waiting: '
 +IntToStr(Hall.TimeLimitExits));
Memo.Lines.Add('Lost customers due to limited capacity: '+
 IntToStr(AnotherShop.Entries-Hall.TimeLimitExits));
Memo.Lines.Add('Percent of lost customers: '+FormatFloat('0.00',
 AnotherShop.Entries*100.0/Entrance.Exits)+'%');

The example of simulation results:

Capacity: 5
Total customers: 9084
Total amount of lost customers: 1465
Lost customers due to limited time waiting: 1136
Lost customers due to limited capacity: 329
Percent of lost customers: 16,13%

Delsi 1.1. Getting Started

11

Sample 8. Changing the parameters during simulation run

In this sample we repeat the model scheme of Sample 1. Let's consider the fact that arrival rate
usually is not the same all time of the day. We need to build model with this additional condition.

Both arrival and service time are exponentially distributed.
The mean of service time is 10.0.

We need to simulate barbershop with the following rate dependence.

Period (hrs) Period since opening (min.) Average arrival interval (min.)
8.00 - 10.00 0-120.00 14.0
10.00 - 12.00 120-240 12.0
12.00 - 15.00 240-420 10.0
15.00 - 17.00 420-540 12.0
17.00 - 20.00 540-720 14.0

To keep those values we use two arrays.

ChangeTime: array[1..5] of real = (0.0,120.0,240.0,420.0,540.0);
ArrivalMeans: array[1..5] of real = (14.0,12.0,10.0,12.0,14.0);

To change average arrival interval in defined moments of model time we use TScheduler component.

{Initializing first planned event}
procedure TForm1.Scheduler1BeforeTimeGoOn(Sender: TAggregate);
begin
 Sender.NextTime(0.0); // The first planned event will occur at 0.0
end;

{Handling planned event}
procedure TForm1.Scheduler1Planned(Sender: TAggregate);
begin
 TArrival:=ArrivalMeans[Counter]; // Setting the mean of arrival time
 if Counter<5 then
 Sender.NextTime(ChangeTime[Counter+1]); // Ordering the next event
 Inc(Counter);
end;

The results of simulation are the following.

Usage of the barber: 0,83
Average queue length: 2,16
Maximal queue length: 7
Average waiting time: 22,67
Deviation of waiting time: 19,46
Average waiting time / excluding zero times: 30,39
Deviation of waiting time/ excluding zero times: 16,53

Delsi 1.1. Getting Started

12

Sample 9. Using TCreator component

Sometimes we need to generate transactions explicitly. In Delsi it is possible with the help of
TCreator component.

Let's imagine that before opening there are several people waiting for service. We need to
define the output parameters that depend on the number of that people. Both arrival and service time
are exponentially distributed with means 10.0 and 11.0 accordingly.

To create transactions directly we use OnBeforeTimeGoOn event of Entrance component.

procedure TForm1.EntranceBeforeTimeGoOn(Sender: TAggregate);
begin
 Sender.NextTime(MultiRand.Exponential(11.0));
 if NumberOfPeople>0 then
 PeopleInStreet.Generate(NumberOfPeople); // Direct generation of transactions
end;

Actually, you can use any event for direct generation of transaction. We route generated transaction to
queue Hall.

procedure TForm1.PeopleInStreetRouting(Sender: TBlock; Trans: TTransaction);
begin
 Sender.Pass(Hall);
end;

The results of simulation for 10 initially waiting clients are the following.

Usage of the barber: 0,90
Average queue length: 3,36
Maximal queue length: 11
Average waiting time: 32,26
Deviation of waiting time: 20,69
Average waiting time / excluding zero times: 35,79
Deviation of waiting time/ excluding zero times: 18,67

Delsi 1.1. Getting Started

13

Sample 10. Using TStorage component

Let's return for sample 7. We have the system with limited capacity of the queue and limited
waiting period in the queue. Let's assume that there are several barbers in the barbershop. The owner of
the saloon needs our help to decide how many barbers should work for him.

The arrival and service time are exponentially distributed.
The mean of arrival time is 3.0
The mean of service time is 10.0.
The hall capacity is 5.

To simulate several barbers we use TStorage component. We carry out experiments changing

capacity of storage Barbers.

Memo.Lines.Add('Barbers Losses Usage of one barber');
for i:=1 to 8 do
begin
 Barbers.Capacity:=i;
 Model.Simulate(TLimit);
 Memo.Lines.Add(IntToStr(Barbers.Capacity)+' '+
 FormatFloat('00.00',(AnotherShop.Entries+NoTime.Entries)*
 100.0/Entrance.Exits)+'% ' +
 FormatFloat('00.00',Barbers.AverageCount*100.0/
 Barbers.Capacity)+'%');
 Model.Reset;
end;

The results of simulation for simulation time 720.0

Barbers Losses Usage of one barber
1 69,70% 100,00%
2 41,30% 97,36%
3 23,05% 93,16%
4 11,60% 81,84%
5 04,03% 75,26%
6 00,00% 50,50%
7 00,00% 49,53%
8 00,00% 45,07%

Delsi 1.1. Getting Started

14

Sample 11. Failures and recovers, component TGate, method TServer.Release

Let's consider a workshop, which consists of the box for details and machine tool. The details
arrive to be processed on the machine tool from the box in LIFO order. After processing, details move
to another site.

From time to time machine tool breaks. The worker needs time to fix it. After the breakage of
the tool the detail is removed from the machine tool and omitted in the box for further processing,
which will take as much time as any other details in the box.

Both arrival and processing intervals are exponentially distributed with the mean values 2.0
and 1.5 min. The input parameters are the mean of the interval between tool failures and the mean of
recovery interval. These times are exponentially distributed. Another input parameter is time of
simulation.

Before simulation run we unlock the Gate and plan the first failure using TScheduler
component Scheduler.

procedure TForm1.SchedulerBeforeTimeGoOn(Sender: TAggregate);
begin
 Gate.Unlock;
 Sender.NextTime(MultiRand.Exponential(TFailure));
end;

During simulation we lock and unlock Gate using OnPlanned event of Scheduler. While locking Gate,
we imitate removal of details by use of Release method.

procedure TForm1.SchedulerPlanned(Sender: TAggregate);
begin
 if Gate.isLocked then
 begin
 Sender.NextTime(MultiRand.Exponential(TFailure));
 Gate.UnLock;
 end
 else
 begin
 Sender.NextTime(MultiRand.Exponential(TRecovery));
 Tool.Release; // Removal of a details
 Gate.Lock;
 end;
end;

We pass removed transaction back into the Box using OnRelease event of the Tool component.
.
procedure TForm1.ToolRelease(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Box);
end;

If there is a transaction in the gate after locking, we pass it to bunker.

procedure TForm1.GateRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Gate.isLocked then
 Sender.PassTo(Bunker)
 else
 Sender.PassTo(Tool);
end;

Delsi 1.1. Getting Started

15

Sample 12. Routing that depends on the state of blocks. Transaction fields. Tabulation.

Let's imagine the bank with three cash desks. A visitor goes to cash desk, which is free. If all
cash desks are busy she goes to the queue with minimal length. The arrival and service time are
exponentially distributed. We need to calculate the mean, the deviation of the time spent in the bank
and to build the corresponding histogram.

We route transactions to the queues when they exit from generator Entrance.

procedure TForm1.EntranceRouting(Sender: TBlock; Trans: TTransPtr);
var QueueID: integer;
 MinCount: longint;
begin

 if (CashDesk1.Count=0) and (Queue1.Count=0) then
 begin
 Sender.PassTo(Queue1);
 Exit;
 end;
 if (CashDesk2.Count=0) and (Queue2.Count=0) then
 begin
 Sender.PassTo(Queue2);
 Exit;
 end;
 if (CashDesk3.Count=0) and (Queue3.Count=0) then
 begin
 Sender.PassTo(Queue3);
 Exit;
 end;

 {Choosing the queue with minimal length}
 MinCount:=Queue1.Count;
 QueueID:=1;

 if Queue2.Count<MinCount then
 begin
 MinCount:=Queue2.Count;
 QueueID:=2;
 end;

 if Queue3.Count<MinCount then
 begin
 MinCount:=Queue3.Count;
 QueueID:=3;
 end;

 {Pass transaction to queue with minimal length}
 case QueueID of
 1: Sender.PassTo(Queue1);
 2: Sender.PassTo(Queue2);
 3: Sender.PassTo(Queue3);
 end;

end;

How to determine the time spent in the bank? We need to store the birth moment of the transaction
when the transaction exits form generator. In order to have a field to store the birth time in the
transaction we need to declare new transaction class inherited from TTransaction.

MyTransaction = class(TTransaction)
public
 BirthTime: real;
end;

Delsi 1.1. Getting Started

16

In order to inform the internal simulation manager about the new declaration of transaction we use the
method TModel.SetTransactionClass before simulation run.

Model.SetTransactionClass(MyTransaction);
Model.Simulate(LimitTime);

We store the value of birth time when handle the event TGenerator.OnExit.

procedure TForm1.EntranceExit(Sender: TBlock; Trans: TTransPtr);
begin
 Sender.NextTime(MultiRand.Exponential(TArrival));
 (Trans as MyTransaction).BirthTime:=ModelTime;
end;

When transaction reaches the terminator we calculate the difference between current model time and
the birth time. To obtain the mean, deviation and histogram we tabulate these values using TTabulator
component.

procedure TForm1.ExitDoorEnter(Sender: TBlock; Trans: TTransPtr);
begin
 Tabulator1.PutValue(ModelTime-(Trans as MyTransaction).BirthTime);
end;

After simulation run we output the information collected in the tabulator.

with Tabulator1 do
begin
 Memo.Lines.Add('The histogram of time spending in the bank');
 Memo.Lines.Add('Below '+FormatFloat('000.00',LowerBound)+': '+
 IntToStr(Hits(0)));
 for i:=1 to Tabulator1.IntervalCount do
 begin
 Memo.Lines.Add(FormatFloat('000.00',LowerBound+Interval*(i-1))+' - '+
 FormatFloat('000.00',LowerBound+Interval*(i))+' '+
 IntToStr(Hits(i)));
 end;
 Memo.Lines.Add('Upper '+FormatFloat('000.00',LowerBound+
 Interval*IntervalCount)+': '+
 IntToStr(Hits(IntervalCount+1)));
 Memo.Lines.Add('___');
 Memo.Lines.Add('Average time in the bank: '+
 FormatFloat('0.00',Tabulator1.Mean));
 Memo.Lines.Add('Deviation of time in the bank: '+
 FormatFloat('0.00',Tabulator1.Deviation));
end;

The example of the result output is the following.

The histogram of time spent in the bank
Below 000,00: 0
000,00 - 002,00 789
002,00 - 004,00 526
004,00 - 006,00 269
006,00 - 008,00 126
008,00 - 010,00 83
010,00 - 012,00 35
012,00 - 014,00 10
014,00 - 016,00 0
016,00 - 018,00 0
018,00 - 020,00 0
Upper 020,00: 0

Average time in the bank: 3,09
Deviation of time in the bank: 2,60

Delsi 1.1. Getting Started

17

Sample 13. TDivider and TAssembler

In this sample we consider some workshop. The details arrive to the workshop in boxes by
batches of 10 pieces. After processing on the machine tool they go to another box and then to another
workshop. The box arrival interval and processing time are uniformly distributed. It is necessary to
build a histogram of the box departure interval. The input parameters are the lower and upper bounds
of arrival interval and processing time. One more input parameter is the simulation time.

We simulate box arriving by TGenerator component BoxArrival. To decompose “one box”
into “ten details” we use TDivider component BoxToDetails with capacity 10. After processing on
machine tool (TServer component Tool) we compose every “ten details” into “one box” by use of
Tassembler component DetailsToBox with capacity 10.

We build histogram with help of TTabulator component Tabulator1.

procedure TForm1.AnotherWorkShopEnter(Sender: TBlock; Trans: TTransaction);
begin
 Tabulator1.PutValue(ModelTime-LastArriveTime);
 LastArriveTime:=ModelTime;
end;

The result of simulation for arrival interval from 2.0 to 4.0 and interval of processing from 25.0 to 35.0

The histogram of box departure interval
Below 020,00: 1
020,00 - 021,00 0
021,00 - 022,00 0
022,00 - 023,00 0
023,00 - 024,00 20
024,00 - 025,00 99
025,00 - 026,00 228
026,00 - 027,00 349
027,00 - 028,00 338
028,00 - 029,00 335
029,00 - 030,00 335
030,00 - 031,00 341
031,00 - 032,00 313
032,00 - 033,00 333
033,00 - 034,00 321
034,00 - 035,00 213
035,00 - 036,00 95
036,00 - 037,00 20
037,00 - 038,00 0
038,00 - 039,00 0
039,00 - 040,00 0
Upper 040,00: 0
__
Average output interval 29,93
Deviation of output interval: 3,03

That is a good illustration for the Theorem of Large Numbers.

Delsi 1.1. Getting Started

18

Sample 14. Using priorities with TQueuePrty component

In this sample we are considering the dental clinic with several doctors. The patients may be
divided into two categories: regular patients and patients with tooth pain. The patients may form the
queue. In that case patients with pain will go for the treatment first. So, we can say that they have
higher non-preemptive priority in the medical service.

The following parameters are known:

The arrival time is exponentially distributed.
The mean of arrival time for regular patients is 4.0 min.
The mean of arrival time for patients with tooth pain is 25.0 min.
The service time is uniformly distributed from 7.0 to 15 min.

We need to determine the average value and standard deviation of time spent in clinic for the both
categories of patients in dependence on the number of doctors.

By default, the priority of each new transaction in Delsi is equal to 0. So, the generator RegularPatients
generates transaction with lower priority level.

We set the priority level for transactions generated by the generator ToothpainPatiens with help of
OnAfterGeneration event:

procedure TForm1.ToothpainPacientsAfterGeneration(Sender: TBlock;

 Trans: TTransaction);
begin
 Trans.SetPrty(1); // Sets priority value into 1
end;

The TQueuePrty component handles transactions in the way that high-priority transactions will

be placed at the beginning of the queue. They will leave the queue first. Actually, there are two hidden
internal FIFO queues inside the general queue. So, the number of the hidden queues is equal to
numbers of priority levels of transactions stored in that real queue. Each hidden queue stores
transaction of some priority level. If there are high-priority transactions in the queue, low priority
transaction can leave the queue only for the reason of limitation of waiting time.

The results of simulation for 3 doctors and simulation time 720.0:

1. Regular patients
 Number of patients: 155
 The average time spent in clinic: 24,88
 The deviation of time spent in clinic: 9,22
2. Patients with tooth pain
 Number of patients: 33
 The average time spent in clinic: 12,99
 The deviation of time spent in clinic: 3,36

Delsi 1.1. Getting Started

19

Sample 15. Preempted and postponed service

In this sample we are considering the firm, which executes some orders. There are two types of
orders: regular and urgent. The last one costs twice as much. When the firm executes regular order and
urgent order comes for processing, the firm preempts processing of regular order. After finishing
urgent order, the firm continues processing regular order.

The following parameters are known:

The arrival and service times are exponentially distributed.
The mean of arrival time of regular orders is 5.0 days
The mean of arrival time of urgent orders is 15.0 days
The mean of service time is 3.5 days
Simulated time – 1 year (about 264 working days)

We need to determine the number and the average time of execution for both types of orders. To solve
this task we use transactions with different priority levels. To be able to preempt service in the server
the high-priority transactions have to be preemptive. We set the priority level and its preemptive ability
in OnAfterGeneration event.

procedure TForm1.UrgentOrdersAfterGeneration(Sender: TBlock; Trans: TTransPtr);
begin
 SetPrty(Trans,1);
 SetPreempt(Trans);
end;

When high-priority transaction preempts the service of low-priority one, the server generates
OnPreempt event. (Do not forget to set server’s property Preemptive into True). Handling that event,
we postpone the service of preempted transaction with help of Postpone method.

procedure TForm1.ProcessingPreempt(Sender: TBlock; Trans: TTransaction);
begin
 Sender.Postpone;
end;

When high-priority transaction leaves the server, the last one continues processing of low-priority
transaction. The results of simulation are the following.

1. Regular orders
 Number of arrived orders: 44
 Number of executed orders: 34
 The average execution time: 21,95
 The deviation of execution time: 16,59
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 17
 The average execution time: 5,53
 The deviation of execution time: 4,22
__
The average number of orders on processing: 1,12
The maximal number of orders on processing: 2
The loading of firm: 0,82
The average length of the queue: 2,84
The maximal length of the queue: 10
The cost of executed orders: 680000,00

Delsi 1.1. Getting Started

20

Sample 16. Passing preempted low-priority transactions

In this sample we consider another business strategy for the firm of Sample 15. When the
processing of regular order is preempted by urgent order, the firm gives that regular order to the
company-subcontractor. The input parameters and the task are the same like in the Sample 15.

By Handling OnPreempt event, we pass preempted transaction to another block.

procedure TForm1.ProcessingPreempt(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Subcontractor);
end;

The results of simulation are the following.

1. Regular orders
 Number of arrived orders: 45
 Number of executed orders: 25
 The average execution time: 12,22
 The deviation of execution time: 12,51
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 17
 The average execution time: 7,20
 The deviation of execution time: 7,98
3. Orders passed to subcontractor
 Number of orders: 13
__
The average number of orders in processing: 0,69
The maximal number of orders in processing: 1
The loading of firm: 0,685
The cost of executed orders: 590000,00

Delsi 1.1. Getting Started

21

Sample 17. Preempting in TQueuePrty

In this sample we consider the third business strategy for the firm of Samples 15,16. According
to this strategy the firm limits the size of queue up to 3 orders. Urgent order may preempt the regular
order waiting in the queue. Also this strategy supposes preempting the processing.

Let’s imagine that firm process one order and keeps three other in the queue. We can consider
two ways of the new order arrival:

1. The new order is regular. In this case the firm passes the new order to a subcontractor.
2. The new order is urgent.

2a: The queue contains three urgent orders. In this case new order will be passed to the
 subcontractor.
2b: The queue contains at least one regular order. In this case urgent order will replace
 the regular one. The replaced regular order will be passed to the subcontractor.

The preempting service is in use as well.

We implement the first way by handling of OnRouting event of RegularOrders generator.

procedure TForm1.RegularOrdersRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Queue.IsReadyToReceive(Trans) then
 Sender.PassTo(Queue)
 else
 Sender.PassTo(Subcontractor)
 end;

We implement 2a in similar way.

procedure TForm1.UrgentOrdersRouting(Sender: TBlock; Trans: TTransaction);
begin
 if Queue.IsReadyToReceive(Trans) then
 Sender.PassTo(Queue)
else
 Sender.PassTo(Subcontractor)
end;

In this procedure the function Queue.IsReadyToReceive(Trans) returns False only if the queue contains
three high-priority transactions, otherwise it returns True.

Considering the variant 2b, we can say that TQueuePrty is being preempted like a server. We pass
preempted transaction by handling OnPreempt event (Do not forget to set Preemptive property of
components Queue and Processing into True).

procedure TForm1.QueuePreempt(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Subcontractor);
end;

Delsi 1.1. Getting Started

22

The results of simulation are the following.
1. Regular orders
 Number of arrived orders: 44
 Number of executed orders: 24
 The average execution time: 11,40
 The deviation of execution time: 10,52
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 17
 The average execution time: 4,55
 The deviation of execution time: 3,86
3. Orders passed to subcontractor
 Number of orders: 17
 Orders passed from queue: 2
 Orders passed from processing: 10
__
The average number of orders in processing: 0,72
The maximal number of orders in processing: 1
The loading of firm: 0,72
The average length of the queue: 1,0971
The maximal length of the queue: 3
The cost of executed orders: 580000,00

Delsi 1.1. Getting Started

23

Sample 18. Preempting in TStoragePrty

In this sample we consider the forth business strategy for that firm. This strategy is similar to
the strategy of Sample 17 with preempting in TQueuePrty.

Let's imagine that firm is able to process several orders simultaneously. One employee can
process one order. If there is at least one urgent order in the queue and one regular order is on
processing, the urgent order will replace the regular one, which is being processed. The replaced
regular order will be passed to a subcontractor.

We simulate the processing with TStoragePrty component. The value of Capacity is the number of
employees.

We pass preempted transaction to the block Subcontractor by handling of OnPreempt event of
TStoragePrty.

procedure TForm1.ProcessingPreempt(Sender: TBlock; Trans: TTransPtr);
begin
 Sender.PassTo(Subcontractor);
end;

The results of simulation for three employees are the following.

1. Regular orders
 Number of arrived orders: 45
 Number of executed orders: 30
 The average execution time: 12,58
 The deviation of execution time: 8,79
2. Urgent orders
 Number of arrived orders: 17
 Number of executed orders: 16
 The average execution time: 8,59
 The deviation of execution time: 6,45
3. Orders passed to subcontractor
 Number of orders: 11
__
The average number of orders in processing: 2,31
The maximal number of orders in processing: 3
The cost of executed orders: 620000,00

Delsi 1.1. Getting Started

24

Sample 19. Multiple forms

What should we do if we have so many components in the model that we cannot place them on
one form? We can place them on several forms. Tthe internal control subsystem will gather all
aggregates into one united model before simulation run. In this sample we place the blocks of the
model on different forms.

On Form2: generator Entrance, queue Hall;
On Form3: server Barber, terminator ExitDoor.

If we pass transaction to the block of another form, we need to do it this way.

procedure TForm2.HallRouting(Sender: TBlock; Trans: TTransaction);
begin
 Sender.PassTo(Form3.Barber);
end;

The same way we refer to MultiRand, which is placed in Form1.

procedure TForm2.EntranceExit(Sender: TBlock; Trans: TTransaction);
begin
 Sender.NextTime(Form1.MultiRand.Exponential(ArrivalTime));
end;

When we implement output of results, we also refer to the blocks placed in other forms.

procedure TForm1.Button1Click(Sender: TObject);
begin
 { Checking all input paramters }

 Model.Simulate(SimTime);
 Memo.Lines.Add('Usage of the barber:'+
 FormatFloat('0.00',Form3.Barber.Usage));
 Memo.Lines.Add('Average queue length: '+
 FormatFloat('0.00',Form2.Hall.AverageCount));
 Memo.Lines.Add('Maximal queue length: '+
 IntToStr(Form2.Hall.MaxCount));
 Memo.Lines.Add('Average waiting time: '+
 FormatFloat('0.00',Form2.Hall.AverageTime));
 Memo.Lines.Add('Deviation of waiting time: '+
 FormatFloat('0.00',Form2.Hall.DeviationTime));
 Memo.Lines.Add('Average waiting time / excluding zero times: '+
 FormatFloat('0.00',Form2.Hall.SAverageTime));
 Memo.Lines.Add('Deviation of waiting time/ excluding zero times: '+
 FormatFloat('0.00',Form2.Hall.SDeviationTime));
 Model.Reset;
 MultiRand.Reset;
end;

Do not forget to define Uses clause in implementation part of the unit.

In Sample19.pas: Uses Unit2,Unit3;
In Unit2.pas: Uses Sample19, Unit3;
In Unit3.pas: Uses Sample19;

