
Discrete-event simulation system Delsi 1.1

Copyright © 1996-2002, Herman Holushko

Programmer's Guide

Delsi 1.1. Programmer’s Guide 2

CONTENTS

INTRODUCTION..3
INSTALLATION...4
1. SIMULATION LOGIC..5

1.1. Objects of model .. 5
1.2. Main simulation algorithm ... 7
1.3. Advantages of Delsi simulation logic .. 8

2. MODEL TIME...8
3. TRANSACTIONS ...9
4. Delsi COMPONENTS ...10

4.1. TModel ... 10
4.2. TScheduler.. 12
4.3. TBlock .. 13
4.4. TGenerator.. 15
4.5. TQueue ... 16
4.6. TStack... 18
4.7. TQueuePrty .. 19
4.8. TServer ... 22
4.9. TStorage ... 24
4.10. TStoragePrty... 26
4.11. TTerminator.. 28
4.12. TDivider ... 29
4.13. TAssembler .. 30
4.14. TCreator.. 31
4.15. TGate .. 32
4.16. TTabulator .. 33
4.17. TMultiRand .. 34

References ..37

Delsi 1.1. Programmer’s Guide 3

INTRODUCTION

The main idea of Delsi modeling is that your queuing formalization may be performed as an oriented
graph with the nodes, which correspond to some processing objects (such as generators, queues,
servers etc). The arcs of the graph correspond to the streams of transactions. Some user algorithms
may control processing objects and transaction routing.

The simulation system is designed using object -oriented approach. The whole model and the
processing objects (so called blocks) are implemented as Borland® Delphi™ components. The transactions
are implemented as objects.

The user algorithms are implemented as reactions on events such as entering block, routing, exit from
block and others. During the simulation transactions are being passed from one block to another. By use of the
methods and properties of components it is possible to control the behavior of the model and obtain necessary
statistical results.

From the end-user's point of view, Delsi allows him to use all the power of Delphi (GUI, OOP, and
components) as an environment for developing a wide variety of simulation models, implemented as software
products. Delsi, in combination with a standard PC and Delphi creates a non-expensive simulation workplace
for developing valuable applications.

Delsi 1.1. Programmer’s Guide 4

INSTALLATION

How to install Delsi?

- Extract delsi_*.zip into some directory, for instance, C: \DELPHI\DELSI
- Start Delphi
- Choose Componet|Install Packages
- Click “Add”
- Type the full file name C:\DELPHI\DELSI\delsi.bpl
- Click “Open”
- Click “Ok”

You should have now a new page on your component palette called Delsi with new components.

Don't forget to add the PATH of your installed units to Project|Options|Directories/Conditionals|Search Path.

Delsi 1.1. Programmer’s Guide 5

1. SIMULATION LOGIC

1.1. Objects of model

Delsi is based on the Theory of Aggregate Models. The basic unit of an aggregate model is Piecewise
Linear Aggregate (PLA).

Aggregate is an abstract object, which functions in time. It is capable to perceive entering signals X, to
produce output signals Y and to be in each instant in a condition Z. The dynamics of PLA has an event-driven
nature. Two key operations correspond to Delsi aggregates: activation and odering next activation time.

There are two kinds of aggregates in Delsi: schedulers and blocks.

Scheduler is an aggregate, which just handles some user-processed event. It does not operate with

transactions.

Block is an aggregate, which sends and receives transactions.

Each block is characterized by two states: Ready/not ready to receive transaction and Ready/not ready
to give transaction. These states are necessary conditions for transaction transfer. Generally, the behavior of
each block is described as a reaction to the following events: OnEnter (transaction is entering the block),
OnRouting (the block is Ready to give and it needs to send the transaction to another block), OnExit
(transaction leaves the block). For some blocks there are additional specific events, which determine their
behaviour.

Delsi 1.1. Programmer’s Guide 6

The inheritance of aggregates has the following structure.

Activation is an event initiated by the changes of model time. The activation of scheduler is just the

initiating of user-processed event. For the generator, activation is the producing of a new transaction. For
servers, queues, storages it is the finishing of the waiting period for a certain transaction.

Ordering next activation time takes place during the handling of the certain aggregate events. For
example, when the transaction leaves the generator we order next activation time (the time interval till the
next generation) by handling OnExit event. When transaction enters into a server or storage we order the next
activation time (the service time) by handling OnEnter event. During ordering next activation time the record
with the following fields will be inserted into the system calendar (List of Future Events): Block, Transaction/
nil, Activation Time.

FIFO rule of activation: If several aggregates should be activated at the same time they will be
activated with FIFO rule (First ordered - first activated).

Transaction is a dynamic object, which moves through the fixed structure of blocks. They resemble
GPSS transactions but they can have an arbitrary structure.

Delsi has the following limitation: One transaction may be only in one block at the same time.

TComponent
TAggregate

TScheduler
TBlock

TGenerator
TProQueue

TQueuePrtyCustom
TQueuePrty
TStoragePrty

TServer
TQueueCustom

TQueue
TStack

TStorage
TAssembler
TDivider
TCreator
TGate
TTerminator

TModel
TMultiRand
TTabulator

Delsi 1.1. Programmer’s Guide 7

1.2. Main simulation algorithm

The simulation logic is controlled by the main simulation algorithm, which is performed in pseudo-
programming language as shown below. The main cycle of the simulation algorithm scans the system
calendar. In case of Delsi, the system calendar is called the List of Future Events (LFE), which keeps the
interior events of aggregates.

repeat
Take the next element form the List of Future Events;
ModelTime:=NewTime;
Model.OnNewTime; // You can check what has happened
If Aggregate is Scheduler then

Activate(Scheduler)
else

begin
Activate (Block, Transaction);
Insert this Block into the List of Current Events;
Using List of Current Events do all possible transaction passes;

end;
until ModelTime<LimitTime;

List of Current Events (LCE) includes all the blocks, which are in the state Ready to Give. The following
algorithm controls the implementation of all possible passes.

repeat
for all blocks in the LCE do
begin

Block.OnRouting; // Pass transaction to another block
if not Block.ReadyToGive then

Remove Block from the LCE;
end;

until at least one pass have been done;

The user can route the transaction in the routine of OnRouting event in the following way:

if Condition then
ThisBlock.PassTo(Block1)

else
ThisBlock.PassTo(Block2);

The procedure PassTo does the following:

if AnotherBlock.ReadyToReceive(PassedTransaction) then
begin

ThisBlock.ExitFromBlock; // The transaction leaves this block
ThisBlock.OnExit; // User-defined handling
AnotherBlock.OnEnter; // User-defined handling
AnotherBlock.EnterToBlock; // The transaction enters to another block
Model.OnAfterPass; // User-defined handling

end;

Delsi 1.1. Programmer’s Guide 8

1.3. Advantages of Delsi simulation logic

Main simulation algorithm does not know about transactions

As we have seen, the main simulation algorithm operates with the states and events of blocks.
Transactions are generated, moved and terminated during different operations with blocks. The main
simulation algorithm knows almost nothing about the transactions. Thus, the speed of the main simulation
algorithm does not depend on the number of transactions in the system.

Direct access to transactions in the block

Independently of the number of transactions in the block, the search and removal of certain transaction
in the block is one-step operation. Let's imagine the storage with 100,000 transactions. In some moment of the
model time one of them has to be removed. The node of List of Future Events stores the address of the
transaction and address of the storage. Because transactions are stored in the storage in a bi-directional list,
this particular transaction will be found and removed directly. That is why the term of activation and exiting
does not depend on the number of transactions in storage. The same rule applies to queues with limited
waiting time. Generally, for all blocks of Delsi there are no cycles during entering, activation or exiting. So,
the number of transactions in the model does not influence the performance.

All time dependences are concentrated in LFE

The blocks place transactions independently of their activation time. The List of Future Events is a
single data structure where all time dependences are maintained. In simulation systems with intensive load,
the length of LFE may reach hundreds of thousands of items. That is why LFE maintenance plays such a
decisive role in the performance. Delsi is designed in such way that I/O performance of LFE has binary-
logarithmic dependence on its length.

2. MODEL TIME

The model time is not physical but modeled time. Before simulation start-up and after model reset the
model time is equal to 0.

function ModelTime: real;

Returns current model time.

Delsi 1.1. Programmer’s Guide 9

3. TRANSACTIONS

Declaration

TTransaction = class(TObject)

Methods

procedure TTransaction.SetPrty(Prty: byte);

Sets priority level Prty for the transactioin

procedure TTransaction.SetPreempt;

Makes the transaction preemptive.

procedure TTransaction.SetNonPreempt;

Makes the transaction non-preemptive.

function TTransaction.GetPrty: byte;

Returns the priority of the transaction.

function TTransaction.IsPreempt: boolean;

Returns True if the transaction is preemptive. Otherwise returns False.

function TTransaction.GetTransID: longint;

Returns the transaction ID. IDs of all “alive” transactions are unique but newly generated
transaction may repeat the ID of terminated one.

Inheritance

It is very important that you can redefine TTransaction to obtain the new customized fields. For
instance,

MyTransaction = class (TTransaction);
public
 MyField1: integer;
 MyField2: real;
end;

When you redefine TTransaction you have to inform the internal simulation manager about that
new redefinition. Do this by calling method TModel.SetTransactionClass before start of
simulation:

Model.SetTransactionClass(MyTransaction);

When you need to use your own fields, do this in the following way.

procedure TForm1.EntranceExit(Sender: TBlock; Trans: TTransaction);
begin
 (Trans as MyTransaction).MyField2:=ModelTime;
end;

Delsi 1.1. Programmer’s Guide 10

4. Delsi COMPONENTS

4.1. TModel

Declaration

TModel = class(TComponent)

Purpose

TModel is a fundamental component, which is responsible for the whole model functioning. With help
of TModel we can start and stop the simulation process or clear statistics collected in the blocks. One more
useful feature of TModel is the possibility of registration of transaction passes and fixing the moments of time
changes. There can be only one TModel component in an application.

Properties

property HeapSize: byte;

Before the simulation starts-up the application allocates a cut of memory. In HeapSize you can
set the size of allocated memory in Megabytes. The range of possible values is from 1 to 128.
The default value is 4.

property PageSize: integer;

All dynamic objects of Delsi, like transactions, elements of LFE and LCE are stored in memory
pages. This property sets the page size in bytes. The range of possible values is from 1024 to
32768. The default value is 1024.

Methods

procedure ClearStatistics;

Clears statistics of all blocks. As a rule, stationary stochastic systems have transitional phase in their
initial period of time. If the contributor wants to evaluate parameters of a system in its stable state, the
transitional process brings an error to outcomes. We can cut off the errors by clearing statistics after
the transient phase.

procedure Reset;

This procedure resets the model into its initial state so, that it becomes ready for the next run. Use
this procedure when you need several simulation runs with changing input parameters.

procedure SetTransactionClass(TransClass: Tclass);

You need this method when you redefine class TTransaction to obtain your own customized
structure of transaction. Use this procedure before simulation run (i.e. be fore first calling
TModel.Simulate).

procedure Simulate(TLimit: real);

Starts simulation run. The simulation will proceed until reaching a value TLimit by model time.

procedure Stop;

Delsi 1.1. Programmer’s Guide 11

Stops simulation run.

Events

TAfterPassEvent = procedure(Sender: TBlock; // sending block
 Receiver: TBlock; // receiving block

 Trans: TTransaction) // passed transaction
 of object;

property OnAfterPass: TAfterPassEvent;

The event occurs after the transaction is passed from one block to another.

TBeforeModelGoOnEvent = procedure of object;
property OnBeforeTimeGoOn: TBeforeModelGoOnEvent;

This event occurs before model running and before blocks’ events OnBeforeTimeGoOn. So, it’s
the first Delsi event at all.

TDeadlock = procedure of object;
property OnDeadlock: TDeadlock;

This event is initiated after detection of deadlock in the simulated system. The deadlock
in Delsi means that the List of Future Events is empty.

TNewTimeEvent = procedure(Aggregate: Taggregate; // activated aggregate

 Trans: TTransaction) // nil or activated transaction
 of object;

property OnNewTime: TNewTimeEvent;

The event occurs when model time changes the value. Parameter Aggregate refers to activated
aggregate (block or scheduler). Trans is the transaction, which should leave the block (server,
queue or storage). If the activated aggregate is a generator or scheduler, Trans is equal to nil.

Delsi 1.1. Programmer’s Guide 12

4.2. TScheduler

Declaration

TScheduler = class(TAggregate)

Purpose

TScheduler is intended to initiate the events through some intervals of simulation time. By use of this
event, the user can change the parameters of the model, stop simulation run, clear statistics or
lock/unlock gates.

Methods

procedure NextTime(ActivationTime: real);

Sets the period of time till the next activation.

Events

TBeforeTimeGoOnEvent = procedure(Sender: TAggregate) of object;
property OnBeforeTimeGoOn: TBeforeTimeGoOnEvent;

The event occurs before simulation run. We can use it to do any user-defined action before
simulation, for example, to initialize some parameters. This event is especially useful for
planning the first user-defined procedure used during simulation run. We plan the next event
using method NextTime.

TPlannedEvent = procedure(Sender: TAggregate) of object;
property OnPlanned: TPlannedEvent;

This event is a result of activation, which happens after expiration of ActivationTime. By handle
of this event we can do any possible changes for the model. If you need to order the next
activation, use NextTime again.

Delsi 1.1. Programmer’s Guide 13

4.3. TBlock

Declaration

TBlock = class(TAggregate)

Purpose

TBlock is an ancestor of all Delsi blocks. Here we describe the methods and events common for all
blocks.

Methods

procedure ClearStatistics;

Clears accumulated statistics in the block. When TModel.ClearStatistics is being executed, it
calls the method ClearStatistics for all blocks of a model.

function Count: longint;

Returns the current number of transactions in the block.

function Entries: longint;

Returns the total number of transactions, which have entered into the block..

function Exits: longint;

Returns the total number of transactions, which have exited from the block.

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the block is ready to receive transaction pointed by Trans.

function Pass(Block: TBlock): boolean;

Passes current transaction to the block Block. If transaction is successfully passed, the function
returns True. Use this method only when you handle OnRouting, OnPreempt, OnRelease and
OnTimeFinish events.

Events

TOnEnterToBlock = procedure(Sender: TBlock; // This block
Trans: TTransaction) // Entering transaction

of object;
property OnEnter: TOnEnterToBlock;

The event occurs when transaction enters into the bloc k. It is not applicable for TGenerator.

TOnExitFromBlock = procedure(Sender: TBlock; // This block
 Trans: TTransaction)// Exiting transaction

of object;
property OnExit: TOnExitFromBlock;

The event occurs when transaction leaves the block. It is not applicable for TTerminator.

Delsi 1.1. Programmer’s Guide 14

TOnRoutingEvent = procedure(Sender: TBlock; // Sending block (this block)

 Trans: TTransaction) // Passed transaction
 of object;

property OnRouting: TOnRoutingEvent;

Processing this event you can route transaction to another block with the help of Pass method.
Using Delphi’s power you can create very sophisticated procedures of routing.

Delsi 1.1. Programmer’s Guide 15

4.4. TGenerator

Declaration

TBlock = class(TBlock)

Purpose

TGenerator produces one transaction per activation. It is commonly used source of transactions in the
model. We use it when we need to simulate arrival of new entities (transactions) to the model. Usually,
the arrivals have some rate described by probability distribution. In order to simulate sequential arrivals,
we need to order next activation (i.e. next transaction generation) when transaction leaves the generator.
Assigning random numbers to ActivationTime, we simulate statistical properties of the arrival rate.

Methods

function AverageTime: extended;

Returns the average time between the moments when transactions leave the generator.

function DeviationTime: extended;

Returns the standard deviation of time between the moments when transactions leave the
generator.

procedure NextTime(ActivationTime: real);

Sets the time to the next activation (generation of transaction).

Events

TOnAfterGenerationEvent = procedure(Sender: TBlock; Trans: TTransaction) of
 object;

property OnAfterGeneration: TonAfterGenerationEvent;

The event occurs right after generation of new transaction. It’s a good time to set the transaction
properties like priority, preemptive property or fields defined by user.

TBeforeTimeGoOnEvent = procedure(Sender: TAggregate) of object;
property OnBeforeTimeGoOn: TBeforeTimeGoOnEvent;

The event occurs before simulation run. We use it to order the time of generation of the first
transaction. After that we do it with help of NextTime method.

property OnExit: TOnExitFromBlock;

The event occurs when transaction leaves the block. It is a good moment to order the next
transaction generation by use of NextTime method.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Delsi 1.1. Programmer’s Guide 16

4.5. TQueue

Declaration

TQueue = class(TQueueCustom)

Purpose

This component simulates simple FIFO queue. It handles transactions in accordance with the rule “First
input – first output”. The queue may have limited capacity. Another useful feature is the possibility to
limit a waiting period in the queue. You can do this by the ordering the activation when a transaction
enters the queue. If the number of transactions in the queue is less than its capacity, the queue is in the
state of “ Ready to Receive”. If the queue keeps one or more transactions, it is in the state of “Ready to
Give”.

Properties

property Capacity: longint;

Capacity is the greatest possible number of transactions in the queue. If the number of
transactions is equal to capacity, the queue is “ Not Ready to Receive”. If Capacity is equal to 0,
the possible number of transactions in the queue is unlimited.

Methods

function AverageCount: extended;

Returns the average number of transaction in the queue (average length).

function AverageTime: extended;

Returns the average time spent in the queue.

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

Returns the standard deviation of the time spent in the queue.

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the queue is “Ready to Receive” transaction Trans.

function MaxCount: longint;

Returns maximal number of transactions in the queue (maximal length).

procedure NextTime(ActivationTime: real);

Limits the waiting time for the entering transaction by the value of ActivationTime. Use this
method only when handle OnEnter event.

function SAverageTime: extended;

Returns average non-zero time spent by transactions in the queue.

Delsi 1.1. Programmer’s Guide 17

function SDeviationTime: extended;

Returns the standard deviation of the non-zero time spent by transactions in the queue.

function TimeLimitExits: longint;

Returns the number of transactions, which have abandoned the queue because of the end of
waiting period.

function Usage: extended;

Returns a relative part of the time when the queue was in use.

function ZeroEntries: longint;

Returns the number of transaction entries into the queue, when the queue was empty.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock. If you want to limit the waiting time in the queue, do this by processing this
event with the help of NextTime method.

property OnExit: TOnExitFromBlock;

See 3.3. TBlock.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

TOnTimeFinish = procedure(Sender: TBlock; // This queue
 Trans: TTransaction) // The transaction whose time is finished

 of object;
property OnTimeFinish: TOnTimeFinish;

This event occurs when admissible latency period for the transaction is finished. We call this moment
“activation of the queue”. Here you can determine what will happen further with the transaction. One
of alternatives is to pass the transaction to another block. If you don't pass the transaction to another
block, or if you don’t handle this event at all, the transaction will be terminated.

Delsi 1.1. Programmer’s Guide 18

4.6. TStack

Declaration

TStack = class(TQueue)

Purpose

This component simulates simple LIFO queue. It handles transactions in accordance with the rule “Last
input – first output”. Besides, this component repeats all properties, methods and events of TQueue.

Delsi 1.1. Programmer’s Guide 19

4.7. TQueuePrty

Declaration

TQueuePrty = class(TQueuePrtyCustom)
Purpose

TQueuePrty differs from TQueue by the discipline of transaction keeping. It keeps them in accordance
with the rule “First input – first output in its priority level”. So, the transactions with higher priority will leave
the queue first.

Another distinguishing feature of TQueuePrty is the following. Let’s imagine that the queue is full, i.e.
the number of transactions is equal to the queue capacity, and a transaction tries to enter into the
queue. Assume that this transaction has pre-emptive priority with the level higher than the lowest
priority of transactions in the queue. In this case high-priority pre-emptive transaction will displace
the lowest-priority transaction. This operation is called preempting. Preempted (displaced) transactions may
be passed to the other blocks or terminated depending on handling procedure of OnPreempt event.

Properties

property Capacity: longint;

See 3.5. TQueue

property Preemptive: boolean;

The preempting is possible if Preemptive is True.

Methods

function AverageCount: extended;

See 3.5. TQueue

function AverageTime: extended;

See 3.5. TQueue

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

See 3.5. TQueue

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the queue is “Ready to Receive” transaction Trans. It takes place in the following
cases:

• The capacity is unlimited;
• The number of transactions in the queue is less then its capacity;
• Entering transaction pointed by Trans has preemptive priority higher than the priority

of at least one transaction in the queue.

Delsi 1.1. Programmer’s Guide 20

function MaxCount: longint;

See 3.5. TQueue

procedure NextTime(ActivationTime: real);

See 3.5. TQueue

function PreemptExits: longint;

Returns the number of transactions, which have abandoned the queue due to priority preempting.

function SAverageTime: extended;

See 3.5. TQueue

function SDeviationTime: extended;

See 3.5. TQueue

function TimeLimitExits: longint;

Returns the number of transactions, which have abandoned the queue because of the end of
admissible waiting period.

function Usage: extended;

See 3.5. TQueue

function ZeroEntries: longint;

See 3.5. TQueue

Events

property OnEnter: TOnEnterToBlock;

See 3.3 TBlock, 3.5 TQueue

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

TOnPreempt = procedure(Sender: TBlock; // This queue
 Trans: TTransaction) // Preempted transaction

 of object;
property OnPreempt: TonPreempt;

Handling this event, you can determine what will happen with the preempted low–priority transaction.
You can pass preempted transaction to another b lock. If you don't pass the transaction or if you don’t
handle this event at all, the transaction will be terminated.

Delsi 1.1. Programmer’s Guide 21

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

property OnTimeFinish: TOnTimeFinish;

See 3.5. TQueue

Delsi 1.1. Programmer’s Guide 22

4.8. TServer

Declaration

TServer = class(TProQueue)

Purpose

TServer simulates a serving process. Only one transaction can be served at any moment of time.
The transaction is being served during the time defined by NextTime method in the procedure of
handling OnEnter event.

As TQueuePrty component, TServer can handle preempting. Preemptive high-priority transaction
preempts the service of low -priority transaction. The preempted transaction may be passed to another
block or terminated. The third alternative is that the serving preempted transaction may be postponed.
When a high-priority transaction leaves the server, the postponed transaction will be reset on serving for
the rest of service time. The server can store only one postponed transaction per priority level.
Postponed transactions are kept in the stack ordered by priority. Note, there is a difference between the
number of transactions which are being served (may be 0 or 1) and the number of transactions in the
server (may be equal up to number of priority levels in your model).

Properties

property Preemptive: boolean;

The preempting is possible if Preemptive is True.
Methods

function AverageCount: extended;

Returns the average number of transactions in the server.

function AverageTime: extended;

Returns the average time spent by transactions in the server.

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

Returns the deviation of time spent by transactions in the server (including the time of
postponing).

function IdleForExit: boolean;

Returns True if the current transaction in the server is already served. In this case the transaction
is just waiting for exit.

Delsi 1.1. Programmer’s Guide 23

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the server is “Ready to Receive” transaction Trans. It takes place in the following
cases:

• The server is empty.
• The entering transaction pointed by Trans has preemptive priority higher than the

priority of the transaction, which is served.

function MaxCount: longint;

Returns the maximal number of transactions in the server.

procedure NextTime(ActivationTime: real);

Sets the service time for the transaction entering into the server. The service time is equal to
ActivationTime. Use this method while handle OnEnter event.

procedure Postpone;

Postpone the service of preempted transaction. Use this method only handling OnPreempt event.

function PreemptExits: longint;

Returns number of transactions, which have abandoned the serve r due to priority preempting.

function Usage: extended;

Returns a relative part of the time when the server was in use.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock. The event occurs when transaction enters into the block. It’s the time to define
the service time using NextTime method.

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

TOnPreempt = procedure(Sender: TBlock; // This server

 Trans: TTransaction) // Preempted transaction
 of object;

property OnPreempt: TOnPreempt;

Handling this event, you can determine what will happen with the preempted low–priority
transaction. Your can pass transaction to another block or postpone its service. If you don't do it
or if you don’t handle this event at all, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Delsi 1.1. Programmer’s Guide 24

4.9. TStorage

Declaration

TStorage = class(TQueueCustom)

Purpose

TStorage may be described as a server able to serve several transactions simultaneously. It is necessary
to notice, that TStorage does not support preempting.

Properties

property Capacity: longint;

Capacity is the greatest possible number of transactions, which could be served in the storage. If
the number of transactions is equal to capacity, the storage is “ Not Ready to Receive”. If
Capacity is equal to 0, the possible number of transactions in the storage is unlimited.

Methods

function AverageCount: extended;

Returns the average number of transactions in the storage. You can determine the average filling
of the storage as a ratio of AvarageCount to Capacity.

function AverageTime: extended;

Returns the average time spent by transactions in the storage.

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

Returns the deviation of time spent by transactions in the storage.

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the storage is “ Ready to Receive” transaction Trans. The function returns True if
the Capacity is 0 or the number of transactions is less than Capacity.

function MaxCount: longint;

Returns the maximal number of tran sactions in the storage.

procedure NextTime(ActivationTime: real);

Sets the service time for the transaction entering the storage. Use this method handling OnEnter
event.

function Usage: extended;

Returns the relative part of time when the storag e was in use.

Delsi 1.1. Programmer’s Guide 25

Events

property OnEnter: TOnEnterToBlock;

The event occurs when transaction enters into the storage. On this event you define the service
time by use of NextTime method.

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Delsi 1.1. Programmer’s Guide 26

4.10. TStoragePrty

Declaration

TStoragePrty = class(TQueuePrtyCustom)

Purpose

Additionally to the possibilities of TStorage, this component supports priority preempting. The
preempting in TStoragePrty is similar to preempting in TQueuePrty and TServer. In contrast to TServer,
it does not support the postponed service.

Properties

property Capacity: longint;

See 3.9. TStorage

property Preemptive: boolean;

The preempting is possible if Preemptive is True.

Methods

function AverageCount: extended;

See 3.9. TStorage

function AverageTime: extended;

See 3.9. TStorage

function Count: longint;

See 3.3. TBlock

function DeviationTime: extended;

See 3.9. TStorage

function IsReadyToReceive(Trans: TTransaction): boolean;

Returns True if the queue is “Ready to Receive” transaction Trans. The function returns True in
the following cases:

• The capacity is unlimited;
• The number of transactions in the storage is less then its capacity;
• The entering transaction pointed by Trans has preemptive priority higher than priority of

the transaction, which is being served.

function MaxCount: longint;

See 3.9 TStorage

Delsi 1.1. Programmer’s Guide 27

procedure NextTime(ActivationTime: real);

See 3.9. TStorage

function PreemptExits: longint;

Returns the number of transactions, which have abandoned the storage due to priority
preempting.

function Usage: extended;

See 3.9. TStorage

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock, 3.9. TStorage

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

TOnPreempt = procedure(Sender: TBlock; // This storage
 Trans: TTransaction) // Preempted transaction

 of object;
property OnPreempt: TonPreempt;

Handling this event, you can determine what will happen with the preempted low-priority
transaction. You can pass preempted transaction to another block. If you don't pass the
transaction or if you don’t handle this event at all, the transaction will be terminated.

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Delsi 1.1. Programmer’s Guide 28

4.11. TTerminator

Declaration

TTerminator = class(TBlock)

Purpose

Transactions enter this block to be terminated. When you handle OnEnter event, the transaction is still
accessible and you have a possibility to get some information about it. TTerminator is always “Ready to
Receive”.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock.

Delsi 1.1. Programmer’s Guide 29

4.12. TDivider

Declaration

TDivider = class(TBlock)

Purpose

Splits the arrived transaction into several transactions. The new transactions have the same
priority and ability to preempt just as their parent. When divider emits transactions, parent transaction
goes last. This block is “Ready to Receive” and “not Ready to Give” if it is empty. If it is not empty, it is
“not Ready to Receive” and “Ready to Give”.

With the purpose of routing you may need to distinguish parental and generated transactions.
You can do this by handling OnExit or OnRouting events. If TDivider.Count returns 1, it’s a parental
transaction.

Methods

function IsReadyToReceive(Trans: TTransaction): boolean;

See 3.3. TBlock

Properties

property Capacity: longint;

The number of the output transactions obtained in the outcome of splitting.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Delsi 1.1. Programmer’s Guide 30

4.13. TAssembler

Declaration

TAssembler = class(TBlock)

Purpose

TAssembler assembles several arrived transactions into one. Actually, the first entering transaction
remains alive. The rest of the transactions in the bundle will be terminated. This block is “Ready to
Receive” and “not Ready to Give” until the resulting transaction is assembled. When transaction is
assembled, TAssembler is “ not Ready to Receive” and “Ready to Give”.

Properties

property Capacity: longint;

Sets the number of the input transactions needed to obtain the assembled transaction.

Methods

function IsReadyToReceive(Trans: TTransaction): boolean;

See 3.3. TBlock

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Delsi 1.1. Programmer’s Guide 31

4.14. TCreator

Declaration

TCreator = class(TBlock)

Purpose

Creates the transactions on demand. After creation of transactions the component is “Ready to Give” as
long as transactions are being emitted. In a combination with TScheduler you can simulate the
generator, which produces portions of the transactions.

Methods

procedure Generate(Number: longint);

Immediately generates Number transactions and order the next activation time equal to 0. Thus,
after the generation simulation manager immediately tries to move generated transactions
through the model.

Events

property OnAfterGeneration: TonAfterGenerationEvent;

The event occurs right after generation of transaction. It’s a good time to set the transaction
properties like priority, preemptive property or fields defined by user. (See 3.4. TGenerator.)

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. TBlock

Delsi 1.1. Programmer’s Guide 32

4.15. TGate

Declaration

TGate = class(TBlock)

Purpose

This block is a simple gate. You can lock, unlock and inverse the gate. If gate is unlocked it works like
simple server with zero service time. By locking the gate you discontinue promoting of the transactions
that go through it.

Methods

procedure Inverse

Locks the gate if it is unlocked and vice-verse.

function IsLocked: boolean;

Returns True if the gate is locked and vice -verse.

procedure Lock;

Sets the gate into the “ not Ready to Receive” state. If there is transaction in the gate in the
locking moment, this transaction will leave the gate whenever it will be possible.

procedure Unlock;

Unlocks the gate.

Events

property OnEnter: TOnEnterToBlock;

See 3.3. TBlock

property OnExit: TOnExitFromBlock;

See 3.3. TBlock

property OnRouting: TOnRoutingEvent;

See 3.3. Tblock

Delsi 1.1. Programmer’s Guide 33

4.16. TTabulator

Declaration

TTabulator = class(TComponent)

Purpose

This component is not an aggregate. It is designed for statistical purposes only. If you need to
build histogram of some output parameter, this component helps you to calculate the hits of its values in
numerical intervals. Beside that, TTabulator calculates the average value of the parameter and its
standard deviation.

Properties

property Interval: real;

Width of a numerical interval.

property IntervalCount: byte;

Number of intervals. The range of admissible values is from 2 to 254.

property LowerBound: real;

Lower bound of the first interval.

Methods

function Count: longint;

Returns the total number of tabulated values.

function Deviation: real;

Returns the standard deviation of tabulated values.

function Hits(Index: byte): longint;

Returns the number of hits in Index interval. If Index is equal to 0, the function returns the
number of hits lower than LowerBound. If Index is equal to IntervalCount+1, the function returns
the number of hits higher than the upper bound of the last interval.

function Mean: real;

Returns the average value of tabulated values.

procedure PutValue(Value: real);

Inputs value for tabulation.

procedure Resets;

Resets all accumulated data.

Delsi 1.1. Programmer’s Guide 34

4.17. TMultiRand

Declaration

TMultiRand = class(TComponent)

Purpose

This component is intended to generate random values of different distributions.

Properties

The basement for obtaining all distributions is uniform distribution from 0 to 1. The prime modulus
multiplicative congruent random number generator (PMMCG) is used to obtain uniformly distributed
values. The algorithm of PMMCG is the following.

MODULUS: = 2147483647; // 2^31-1
Seed:=(Multiplier * Seed) mod MODULUS;
Result:=Seed / MODULUS;

property Seed: comp;

This property sets the initial seed for PMMCG. The value of Seed should be in the range from 2 to
2147483646. The default value is 1000000000.

property Multiplier: comp;

This property sets the multiplier for PMMCG. The value o f Multiplier should be in the range
from 2 to 2147483646. The default value is 950706376.

Fishman and Moore (1986) recommended the following best values of Multiplier.

950,706,376
742,938,285
1,226,874,159
62,089,911
1,343,714,438

Methods

function Beta(ShapeAlpha: real; ShapeBeta: real;
 LowerBound: real; UpperBound: real): real;

Returns Beta distributed values with the following parameters and limitations:

ShapeAlpha – α-shape, ShapeAlpha > 0;
ShapeBeta – β-shape, LowerBound > 0;
LowerBound – Lower bound of distribution, LowerBound >= 0;
UpperBound – Upper bound of distribution, UpperBound > 0, LowerBound <= UpperBound.

Method: Transformation of random values where sample from Beta distribution is some ratio of
two Gamma-distributed samples [4].

Delsi 1.1. Programmer’s Guide 35

function Gamma(Mean: real; Alpha: real): real;

Returns Gamma-distributed variants.

Mean – the mean of distribution, Mean >= 0;
Alpha – the α-shape parameter, Alpha > 0.

Method: For α<1, Jonk’s method is used [7]. For α>1 the function uses combination of Gamma
distribution for α<1 and Erlang distribution.

function Erlang(Mean: real; M: integer): real;

Returns values with Erlang distribution. Distribution has the following parameters.

Mean – the mean of distribution, Mean >= 0;
M – the shape parameter, M > 0.

Method: Summarizing M exponential values; each of them is exponentially distributed with the
mean equal to Mean/M [7].

function Exponential(Mean: real): real;

Returns exponentially distributed values with the mean Mean, where Mean >= 0.

Method: Inverse transfomation [7].

function Lognormal(Mean: real; Deviation: real): real;

Returns variants with lognormal distribution. Mean and Deviation parameters are the mean and
standard deviation of the distribution; both parameters should be greater than 0.

Method: For the equation L=exp(N), if N is normal distributed variants then L is lognormal
distributed [2].

function Normal(Mean: real; Deviation: real): real;

Returns variants with normal distribution. The mean and standard deviation of the variants are set
in the parameters Mean and Deviation; both parameters should be greater than 0.

Method: Transformation of random variables with a selective truncation was used for obtaining
normal variants [1,3].

procedure Reset;

Resets the component into initial state. It sets Seed into initially assigned value and resets some
internal triggers.

Delsi 1.1. Programmer’s Guide 36

function Triangular(Min: real; Mode: real; Max: real): real;

Returns values with triangular distribution. Distribution has the following parameters.

Min – minimal value, Min >= 0.0;
Max – maximal value, Max >= 0.0;
Mode – mode of distribution, Mode >= 0.0, Min <= Mode <=Max.

Method: Inverse transformation [6].

function Uniform(LowerBound: real; UpperBound: real): real;

Returns values uniformly distributed between LowerBound and UpperBound. Both parameters
should be equal or greater than 0 and LowerBound <= UpperBound.

function Weibull(Alpha: real; Scale: real): real;

Returns values with Weibull distribution, which has the following parameters.

Alpha – shape, Alpha > 0
Scale – scale, Scale > 0

Method: Inverse transfomation [5].

Delsi 1.1. Programmer’s Guide 37

References

1. Ahrens, J.H. and U.Dieter, “Computer Methods for Sampling from the Exponential and Normal Distributions”,

Comm. ACM, Vol. 15, 1972, pp. 873-882.
2. Aitchison, J. and J.A.C. Brown, The Lognormal Distribution, Cambridge Press, 1957
3. Box, G.E.P. and M.A.Miller, “A Note on the Generation of Random Normal Deviates”, Annals of Math Stat.,

Vol. 29, 1958, pp. 610-611.
4. Fishman, G.S., Principles of Discrete Event Simulation, John Wiley, 1978.
5. Hahn, G.J. and S .S.Shapiro, Statistical Models in Engineering, John Wiley, 1967
6. Pritsker, A.A.B., The GASP IV Simulation Language, John Wiley, 1974
7. Pritsker, A.A.B., Introduction to simulation and SLAM II, John Wiley, 1984

