ExpressIt Readme.doc

February 6th, 1999

Well I have a new job and it is going to take much of my free time so this is going to be the last of ExpressIt for a while. I have cleaned up and tested each of the examples and made a new package for Delphi 4. I don’t suggest using packages for Delphi 3, sorry they are just too flaky. Catch ya later…

Oct 14th 1998

I forgot to mention one thing I added. There is now a class called TExpressionComponentCollection. This new type of ExpressionObject is used to allow access to the components owned by the reference component. ExprLateExplorer actually uses one of these. In the ExpressIt1LateObject method shows an instance of one of these classes being used. (Don’t worry you can use it as a parse time object as well.) Anyway, in ExpressLateExplorer you can refer to the form’s caption via ‘Form.Caption’, and you can refer to the components in the form by using their component name as the index. For example to access the clear button’s caption you can use ‘Form[“ClearIt”].Caption’. Clear?

While I was writing this I realized that another class needed was TExpressionParentCollection. As you would suspect it is like TExpressionComponentCollection, the big difference is that it uses the parent/child feature of controls instead of component’s owner system.

Also I tightened up the index property as a whole. There is a new method, ValidIndex, in the TExpressionObject class that allows it (or its decendents) to validate the current item index. Additionally if the item index is found to be a constant at parse time then we will do the validation then, saving some validation time at execution time.

Additionally I have exposes more of the internals of the tokens used by the parser. Have fun. (

Oct 13th 1998

This version of ExpressIt contains the following changes…

The ExpressionParser (and it’s descendents, TExpressIt for example) now supports late bound objects with indexes. The ExprLateExplorer project shows off how this works. Take a look at the ExpressIt1LateObject method.

ExpressionParser also now allows you to trace the token stream being created. Once again ExprLateExplorer shows how this works. Take a look at the ExpressIt1CheckToken method. If you turn on the TraceIt check box the expressions will trace their token stream creation. At any point your code can take a look at the token being created and tell the parser to quit parsing.

Sep 9th 1998

Well finally someone, other than myself, finally needed the index feature of TExpressionObject. So now we have the example project ExprArrayExplorer. In this case I have shown how to access the lines property of a TMemo object. Normally that property would not be visible via TExpressionObject because indexed properties are not supported by RTTI. If you look at the TMemoValue class in ExprArray.pas you will see how we add support for the pseudo-property ‘Value’. You can access any line in the Memo by simply specifing the line number (zero relative in my example, but you could change that) with brackets. For example; ‘Memo[12]’ would return the 13th line in the memo. You could also say ‘Memo[12].Value’ but Value is not really needed because it is the default property of TMemoValue. Obviously the 12 in the previous example could have been replaced with any valid expression, for example: ‘Memo[SecondsOf(Now)]’ will return the Nth line in the memo, where N is the current time’s seconds. Ok, it’s a rather strange example but then again its shows off what you can do, who knows this might be something you want to do. (

While I was at it I added the ability to control which properties were indexable. This has always been an issue in the back of my mind, this just gave me the excuse to fix it. In TMemoValue you can’t say ‘Memo[1].Left’ because Left is not indexable. Take a look at the IndexableValue function in ExprArray.pas to see how it was done. With that in mind it is still possible to access the Left property, just say ‘Memo.Left’. Like other TExpressionObject descendents the published properties still shine through, so to speak.

The index stuff is pretty simply to use and can be readly expanded to do more than just numbers. As an example, take a look at the Index property in TMemoValue. ‘Memo[“Joe”].Index’ will return the line number that contains “Joe”. I know it look kind of strange but once again it shows of the power of the index system built into ExpressIt.

Sep 5th 1998

I have removed some documents that no longer have any baring on reality. We have a new installation document and a couple of Excel spreadsheets that list all the operators and functions we currently support. I have also fixed up a few issues in the datetime function sets. Additionally I have made the complex function and operator sets more closely match the general-purpose sets.

Aug 18th 1998

Well things change, what can I say, TExpressionDataset has grown. We now have TExpressionDatasetFields and TExpressionDatasetRecord. The first one is simply a rather extensive expansion of the old TExpressionDataset. The old class still exists, it just now inherits from TExpressionDatasetFields. The second new class allows access to the record information itself. You can actually have instances of both classes pointing to the same dataset.

While I was at it I added the TExpressionDatasetDirect class. While this is similar to TExpressionDatasetFields, they both allow access to the current record's fields. Each class has its strong points. TExpressionDatasetFields allows you access to more than just the field values, it offers quite a number of other field data like name, size, etc. Where is has problems is the naming scheme for the field names. You have to use the [] array syntax. This is both a good and a bad thing. It is good because the field name can be evaluated at run time. It is bad because it does not allow for strong compile name checking and the simpler “.property” syntax. On the other hand TExpressionDatasetDirect provides these two features but while doing this is loses the ability to access field names that are not valid idents. (For more information on valid idents see the IsValidIdent function in Delphi's help system). Additionally the dataset that you hook TExpressionDatasetDirect up to needs to be active before compiling or evaluating expressions. This requirement is because of the strong compile time checking done by TExpressionDatasetDirect.

Additionally I cleaned up the ExpressionObjects unit quite a bit. I hope that I didn't cause many problems, if so send me email and I will fix you up.

Just in: ValueSupport.pas. This guy gives you a simple way to remember values. It supports variants and deferred evaluation. The ExprValueExplorer project shows off this unit. Note the three buttons in the lower right corner and the LateLookup event of ExpressIt1. Remember if you want to use deferred evaluation you will have to tell ValueSupport where your expression parser is, in this project's case we gave it access to ExpressIt1, look at the FormCreate event.

Aug 17th 1998

The newest addition, sorry I forgot to include it earlier, is the TExpressionDataset. This guy works just like a TExpressionObject but it takes a TDataset (or a descendent) and allows the expression system to see its field values. Since field names can have spaces I decided to allow access to them via the index system. So to get at field 'Address 2' you would say Data["Address 2"], this assumes that the TExpressionDataset was exposed using 'Data' as its name. You can see in ExprDBExplorer.dpr's ExprDB.pas on line 131 it is really easy to expose a TQuery (or TTable) to the expression system.

Old information, mostly still valid :-)

Well here is the latest version of Expression Support. I have not updated the archives on the web site, I will be doing that this week sometime. I have given up on the packages for the time being. So just install the ExpressIt unit/class into your User package.

You will notice two events were added to TExpressIt. They expose the late look up system. The first one is OnLookupObject, it can be used to introduce expression objects at evaluation time. Objects that can be resolved at parse time will continue to be. The second event is OnLookupValue. With this puppy you can do late lookup of values. These values can be any valid ident symbol, additionally the symbol can have property stems. See the ExprExplorer demo project for examples of its usage.

Also with this version of TExpressIt you can now create TExpression objects. These objects are produced by the ParseToExpression function of TExpressIt. Once a TExpression is created it can be evaluated repeatedly, skipping the parsing step each time. Remember that a TExpression must be freed like any other object. Put your toys away when you are done playing with them.

Additionally the ExpressIt unit now has a global function called EvaluateIt. If you need to add to the global ExpressIt that is used by EvaluateIt use the GlobalExpressIt function. It will return, any create if needed, a reference to the TExpressIt used by EvaluateIt.

We now have a thingy called TExpressioneer. This puppy uses a TExpressIt (or TComplexExpressIt). So you can have your central function lexicon. You can have as many TExpressioneers as you want and treat them just like you used to use TExpressIt. You can think of TExpressioneer as a lightweight version of TExpressIt. It does not have its own parser or lexicon. In fact it does not have much of anything. Additionally, if you evaluate the same expression over and over again it will be faster with TExpressioneer because it keeps the pre-parsed expression around.

There is now a complex number version of TExpressIt. It is called TComplexExpressIt, aren't we crafty. It works just like TExpressIt except it's lexicon is built around complex numbers. Most of you will not need this guy but if you do then it’s a lifesaver.

I have added quite a number of new function units, if you need what they do simply install them. Take a look at ExpressIt's create to see how. It is pretty simple. There are few more units coming very soon. They will include support for disk-info, environment, registry, version-info, system-info, user-info, and much more.

The matching and SoundEx functions currently use xProcs unit. This unit has been release as freeware. I have included it but with some modifications. All the hints and warnings have been fixed up and I have plugged a few holes in the pattern matching function. Please see the unit's comments for copyright and distribution information.

If you have any question feel free to send them my way.

Eddie Churchill

bechurchill@ntr.net

