Purpose

This class was developed to manage Windows icons and cursors. Delphi does not support loading individual icons or cursors from an icon file. Delphi picks the best fit icon and uses it.
Description

This a class to manage Windows Icon and Cursor files. It can load, save and draw Windows icons and cursors. It supports both icons and cursors from 1BPP to 32BPP (with Alpha Transparency). It is not implemented as TGraphic but as TPersistent. The reason for this being that TGraphic supports only 1 image whilst this is implemented as a list.
Disclaimer
This source code is provided 'as is' with no warranty of any kind. The author disclaims all warranties, expressed or implied, including, without limitation, the warranties of merchantability and of fitness for any purpose. Johan Erasmus assumes no liability for damages, direct or consequential, which may result from the use of this source code. You also agree to not hold Johan Erasmus liable for any damages, direct or consequential which may result from the use of this source code. By using this source code, you are agreeing to all of these conditions.

Distribution
You are granted a non-exclusive, royalty-free right to produce and distribute compiled binary files that are built with any of this source code unless specifically stated otherwise. Without the express written consent of the author, you may not:
1. Distribute modified versions of any source code by itself. You must include the original source code as you found it at the author(s)' web site or the site you downloaded it from.
2. Sell or lease any portion of this source code. You are free to sell any of your own original code that works with or enhances this source code.
3. Distribute this source code for profit.

Suggestions and Comments

I welcome any suggestions and comments or improvements to this class. Please see contact details for more information.

Contact Details

I, Johan Erasmus, can be reached by e-mail: jerasmus@flashmail.com
Copyright
This source code is copyrighted (c) 2006 by Johan Erasmus. All rights reserved. This source code shall remain the exclusive property of the author(s).

Help
The source code consists of the following files:

· Icon.pas (Actual source code of TIconCursorImage & TIconCursorList)

· Icon.INC (Include file with constants: Defaults and limitations)

· IconCursorTypes.pas (Structure definitions)

· ColorPalette.RES (Resource file: Palette information)

· ColorPalette.RC (Resource source file)

The TIconCursorImage class is the actual icon or cursor image. TIconCursorList is a container for TIconCursorImage, since TIconCursorImage can not exist except if it belongs to TIconCursorList.
Below is a description of the Properties, Methods and Events:

TIconCursorImage
Constructor Create(aOwner : TIconCursorList; BPP : TPaletteSize = ps4Bit; Width : Integer = cDefaultIconWidth; Height : Integer = cDefaultIconHeight); Virtual;

This constructor creates a new instance of TIconCursorImage. The aOwner parameter must be of type TIconCursorList, BPP indicates the colour depth of the image, Width and Height indicates the icon dimentions. Icons can have a maximum size of 255 x 255 pixels due to the Byte limitation on size.
Constructor CreateFromStream(aOwner : TIconCursorList; Stream : TMemoryStream); Virtual

This constructor loads an icon or cursor from a stream.
Function GetPaletteIndexByColor(Const Color : TColor) : Integer; Virtual;

This method returns the index of a colour in the palette. Color is the colour to be looked up. The return value is the index of Color in the palette.
Function GetPixelCountOfColor(Const Color : TColor) : Integer; Virtual;
Returns the number of pixels that is coloured Color.

Procedure UpdateIcon; Virtual;
This method updates the icon recreating the HICON GDI object from the two bitmaps: The HoldUpdates flag must be clear for this method to work

Procedure Paint(Const aCanvas : TCanvas; Const Left, Top : Integer); Virtual;
Draw the icon to a canvas using Left and Top parameters as starting point.

Procedure SaveHeaderToStream(Const Stream : TMemoryStream); Virtual;
Save the icon header to a stream

Procedure SaveImagesToStream(Const Stream : TMemoryStream); Virtual;
Save the icon images to a stream

Procedure SaveToFile(Const FileName : String); Virtual;
Saves an icon to a file: This method can only be used to save a single icon to a file

Property IconInfo: TIconCursorInfo read GetIconCursorInfo;
Information about the icon in a structure

Property Handle: HICON read FIconHandle;
The Windows icon handle: Same for cursors

Property Icon: TIcon read GetIcon;
A TIcon object for Delphi compatibility: It messes up high colour icons

Property IconBmp: TBitmap read FIconBmp;
The icon bitmap

Property MaskBmp: TBitmap read FMaskBmp;
The mask bitmap

Property PaletteColorCount: Integer read GetPaletteSize;
The number of colours in the palette: 0 for true colour palette
Property PaletteSize: TPaletteSize read FPaletteSize write SetPaletteSize default cPaletteSize;
The size of the palette

Property PaletteColor[Index : Integer]: TColor read GetPaletteColor write SetPaletteColor;
The colours in the palette

Property Owner: TIconCursorList read FOwner;
The owner of this icon, always TIconCursorList
Property HoldUpdates: Boolean read FHoldUpdates write FHoldUpdates;
If set no updates will be made, use this flag when a lot of updates are made to the bitmaps and changes can only be reflected later on.
Property IsIcon: Boolean read GetIsIcon;

Returns true if this is an icon

Property IsCursor: Boolean read GetIsCursor;

Returns true if this id a cursor

Property XHotSpot: Integer read GetXHotSpot write SetXHotSpot;

The X hot spot (Cursors only)

Property YHotSpot: Integer read GetYHotSpot write SetYHotSpot;

The Y hot spot (Cursors only)

Property XYHotSpot: TPoint read GetXYHotSpot write SetXYHotSpot;

This property allows you to set both the X and Y hotspot simaltaniously
Property TransparentPixels[X, Y: Integer]: Byte read SetTransparentPixel write SetTransparentPixel;

Allows access to the Alpha pixels of 32BPP icons and cursors.
TIconCursorList
Normal TList methods:

Function Add(Const BPP : TPaletteSize = ps4Bit; Const Width : Integer = 32; Const Height : Integer = 32) : TIconCursorImage; Virtual;
Creates and adds a new icon to the list.

Procedure Clear; Virtual;
Clears the list

Procedure Delete(Const Index : Integer); Virtual;
Deletes an icon from the list

Function IndexOf(Const IconImage : TIconCursorImage) : Integer; Virtual;
Returns the index of an icon in the list

Procedure Insert(Const Index : Integer; Const Icon : TIconCursorImage); Virtual;
Inserts an icon in the list.

Function Remove(Const IconImage : TIconCursorImage) : Integer; Virtual;
Deletes an icon from the list

Procedure Sort(Const SortBy : TIconCursorSortCriteria; Const SortOrder : TIconCursorSortOrder = icsoAscending); Virtual;
Sorts the icons

Procedure LoadFromFile(Const FileName : String); Virtual;
Load icon(s) from an icon file

Procedure SaveToFile(Const FileName : String); Virtual;
Save icon(s) to an icon file

Procedure LoadFromStream(Stream : TStream); Virtual;
Load icon(s) from a stream

Procedure SaveToStream(Stream : TStream); Virtual;
Save icon(s) to a stream

Property Items[Index : Integer]: TIconCursorImage read GetIconImage write SetIconImage;
Gives access to the TIconCursorImage objects maintained by the list

Property Count: Integer read GetCount;
Returns the number of objects in the list

Property IsIcon: Boolean read GetIsIcon write SetIsIcon;
Returns true if this is an icon

Property IsCursor: Boolean read GetIsCursor write SetIsCursor;\
Returns true if this a cursor

Property IconOrCursor: TIconOrCursor read GetIconCursor write SetIconCursor;
This property allows you to set wheter it is an icon or cursor

Property SortCriteria: TIconCursorSortCriteria read fSortCriteria;
Allows you to sort the list

Property SortOrder: TIconCursorSortOrder read fSortOrder;
Specifies the whether to order items ascending or descending

Property OnChange: TNotifyEvent read fOnChange write fOnChange;

Change event when the icon or mask of the icon or cursor changes.
Procedure PaintIcon(Const TransparentColor, InverseColor : TColor; IconBmp, MaskBmp, ResultBmp : TBitmap);

Paints the icon replacing the transparent parts with TransparentColor and the inverse parts with InverseColor. The result is returned in ResultBmp.

License Agreement

Icon and Cursor classes version 3.00 (Beta 2) First Public Release

Copyright (C) 2006 - Johan Erasmus

All Rights Reserved

You should carefully read the following terms and conditions before using the

Icon and Cursor classes. Unless you have a different license agreement

signed by Johan Erasmus and by you, your use of this software indicates your

acceptance of this license agreement and warranty.

This license statement and limited warranty constitutes a legal agreement

("License Agreement") between you (either as an individual or a single entity)

and Johan Erasmus for the software product ("Software") identified above,

including any software, media, and accompanying on-line or printed

documentation.

You acknowledge that the Software in source code form remains the property of Johan Erasmus

This software product is copyrighted freeware. The software can currently be

used without charge but Johan Erasmus retains full rights to the program.

You are hereby licensed to make as many copies of this software and

documentation as you wish.
You are specifically prohibited from charging, or requesting donations, for any

such copies, however made; and from distributing the software and/or

documentation with other products (commercial or otherwise) without prior

written permission.

Except as provided in the License Agreement, you may not rent, lease, modify,

translate, sublicense or time-share the Software, media or documentation.

By installing, copying, or otherwise using the software, you agree to be bound

by all of the terms and conditions of the license agreement.

This Agreement will immediately and automatically terminate without notice if

you fail to comply with any term or condition of this Agreement.

Governing law

This agreement shall be governed by the laws of South Africa.

Disclaimer of warranty

This software and the accompanying files are provided 'AS IS' and without

warrantees whether expressed or implied.

Because of the various hardware and software environments into which the

Software may be put, no warrantee of fitness for a

particular purpose is offered.

Johan Erasmus assumes no liability for damages, direct or consequential, which

may result from the use of the Software. You also agree to not hold Johan

Erasmus liable for any damages, direct or consequential which may result from

the use of this Software.

Windows is a trademark of Microsoft Corporation.

All other product names mentioned are trademarks or service marks of their

respective owners.

