
Component TFilteredEdit

Files

Filter.pas

Basic functionality of
component

FilterNode.pas Auxiliary unit

wizardForm.pas,
wizardForm.dfm

Component editor

FilteredEdit.pas Component itself
FilterRTL.dpk Component project
FilterREG.dpk Editor project

The purpose of component

Component is intended for protected input of strings of any type and gives full
control under input. There is no any wildcards you just work in the spirit of Delphi!

Component represents state-mashine. The state diagram type is tree. In each
state only certain set of defined characters are admitted for input. Depending on typed
character current state is changed with other (with its own set) etc.

State tree of component

Consists two kinds of vertices – state-vertices and branch-vertices. State-vertex
consists a set of characters admissible for input in current state. Branch-vertex
describes jump to the next state-vertex.

In the picture 1 the component’s editor shown.

Picture 1- Component’s editor

Any state-vertex has label of the next format:

[S]: char_1 char _2 .. char _n,
where any char_i, i=1..n is admissible for input in respective state.
Vertically below state-vertex its branch - vertices are arranged.
For example, in initial state admissible set is [5, 6]. Typing 5 results in jump to state
with set [a,b,c,d], typing 6 passes control to state with set [h].

State-verteces

 State-vertex is terminal if and only if it has no branches. If this case achieved
and any character from the vertex’s set is typed, input is terminated (you can begin
input pressing Backspace).
If state-vertex has at least on branch then the following required:

1) Union of all branches of the vertex must be equal to set of the vertex
2) Intersection of all branches of the vertex must be equal to empty set

Requirement 2) is accomplished automatically thanks to editor’s control. User must
look for requirement 1 (after editing the component’s tree use button Check).

Branch-verteces

 Any branch-vertex can be both terminal and nonterminal. Any branch -vertex can
have single spring – state-vertex which accepts control from the branch.

Notice: in tree branch-vertex can have many springs, but only the first is considered
to be the state-vertex. All others are branches of the state-vertex

State-vertices cannot have springs.

Editing component

 Is realized by buttons AddChar/AddRange and radiogroup Transforms. The
transform is applied to the currently chosen vertex if it’s allowably. After editing it’s
strongly recommended to check the tree by Check button.

Bugs

Component doesn’t work in design-time. Test it only after compilation.
Notice: although it’s implemented in design/runtime package, few owned elements
(TEdit) doesn’t work properly in design-time.

Example
 if FilteredEdit1.Terminated then
 ShowMessage(FilteredEdit1.Text);

	Component TFilteredEdit
	Files
	The purpose of component
	State tree of component
	State-verteces
	Branch-verteces
	Editing component
	Bugs
	Example

