T Project is a project that a few sentences do not describe it because it’s a project.
Yes it has a tool bar (Tbar) as Delphi does not have a tool bar that is functional enough for the end user. But this T Project is much larger than that. This project sees extensive limitations to some aspects of Delphi prides to the programmer, that without these aspects addressed Delphi may die all together. The problem is embarcadero have been running around with many agenda’s of what their products can do but forgot the fundamentals and at what value that is to the programer project and for price.
 1st we have a VCLControl (descendant of TCustomControl or TGrid without the grid), the Idea of this object is a base screen Object to give near full VCL functionality, it is a large object with a lot of code with the main objective that the programer has the tools offered to do what he needs on the Form object for a special canvas object. In other words you can do everything on the canvas and add other objects into it. VCLControl having optional scrollbars, and a bare canvas to use as a base component to create many things from with Mouse and keyboard inputs and full descent object message support capabilities for your own object. You can still use all the other objects in and around VCLControl if it’s OOP or not.

 TTbar is a type of single line Tool Bar with an added feature of offering a visibility option and auto realigning the single line of standard tool buttons into order with a simple invalidate call. It also holds TEdit and TComboBox, standard button, separators, spacers, toggle buttons, and a single grouping of buttons. The TBar is offered with source code that you can understand how to make other objects moderately easily if you understand OOP. You can use all Delphi menus with drop down buttons.
 T Project includes a TTPopUpMenu descendant of TPopupMenu . The updated Procedure Popup (X, Y: Integer; aPopupControl: TControl = nil); aPopupControl loads PopupControl as a TControl.
Onclick Sends a Perform(CM_MENUCHANGED, Integer(TTPopupMenu), Integer(TTMenItem)); to the PopupControl or sending control that a CMMENUCHANGED(var Message); message CM_MENUCHANGED; in your control is able to receive the message (Raze the button as the menu closes as an example). It also turns OwnerDraw = true as a default for a file list menu.....
And OnClick takes all the MenuItems. OnClick and puts them all into TTPopUpMenu.
TTPopUpMenu has been made with TTbar in mind. So you can mange files, drop down menus
Combo box’s....... but it does not have moving buttons.

TTPopupMenu = class(TPopupMenu)
 private
 FPopupControl: TControl;
 FOnClick: TNotifyEvent;
 public
 constructor Create(AOwner: TComponent); override;
 { aPopupControl to send a CM_MENUCHANGED to sending control}
 procedure Popup (X, Y: Integer; aPopupControl: TControl = nil); reintroduce;
 {collects all Menuitems OnClick to this method }
 procedure Click(Sender: TObject);
 {Records PopupControl in procedure Popup }
 property PopupControl: TControl read FPopupControl write FPopupControl;
 published
 { collects all its Menuitems into one event use sender to identify Menuitems}
 property OnClick: TNotifyEvent read FOnClick write FOnClick;
 end;

The Menus enable the listing of text in a compact form for resent files, and a standard PopUpMenu,
So you can present information to user’s exceptions. The TBar in design time can be expanded and use bigger graphic objects to the standard 24 by 24 if you like. It does not hold text in its buttons but connects 3 TImageLists, “Image” as the default if the others are not available and offer a Disabled button mode to, flat button option with an image list. Hint is fully operating and Zoom the buttons by changing main object Size. You can fit it to the top of a form or a cool bar. In design time all Buttons are managed with TCollection (Buttons), and the object inspector. Object inspector holds Control: TWinControl, If the button is a TEdit or TCombobox use Example- ToolCombobox := TCombobox (TBar1.Buttons[4].Control) to ease your access code size. The rest is self explanatory with well structured Delphi Code. I have placed the components in the IDE TAB “T Project”. Visually this project you will like very very much. You even have a blank canvas for the TTMenuItem that you can use.
Delphi code is supplied for the TTbar object but as you will see its dependant on VCLControl that has a 2020 time limit. US$50 for no time limit or used in final code or sellable project.
Someone may modify this project for 64 bit if it needs it, as its 32 bit Delphi in this code. As long as it’s remembered the original © copywriter owner is me, as I have built all this from scratch.
You use Delphi’s normal ImageList but you need to use T Projects – TPopupMenu
J Lex Dean from New Zealand Email – lexdeanair[at]hotmail.com do not email to ask questions. www.delphipages.com is the place to ask questions.
US$50 if you wish to make a final product or for commercial use even if someone else have added to this project. Not everything has been fully tested together as yet but I’m using it in my project to get fully tested as I speak.
 Eventually if you are any sort of OOP, you will realise VCLControl is the key to this project, and it’s easy to build off like this TBar project. Many other projects will get developed over time from VCLControl. Below are OOP Idea’s I have learned over the years that many OOP have not got to understand. I expect TAction be added over time to this and someone doing CAD. I also see this ideal for time line and many other graphics uses. Graphic drawing features.

VCL Control
It has full Scrollbar options, receives focus with mouse selection, gives all sub objects proper mouse events, Keyboard events.
RawCanvas is the true canvas; Canvas has a TopLeft that you can code with Scrollbars, it also contains a check box option. It has an event that allows you to do object setup as soon as the handle is available. And has a timer installed. Object setup when the window’s handle first arrives is way more critical that many OOP’s realise because you cannot do everything with create method. And a timer used as in TGrid has many side uses. It gets the keybourd caps lock for you. DoubleBuffered = true allows you write to a separate canvas for copying over to remove flicker on CAD projects. You project can use OOP or with a little OOP you can operate the VCL Control object in standard Delphi code for your project as its not complicated code to access.
Make your own Grid if you like and add editors and ComboBox’s, make a Editor of your own. Zoom of objects as in TBar can be added, smooth angled lines, circles are good tools to add. Graphic projects are no longer limited in Delphi.

VCL Control
 protected
 HorzScrollInfo: TScrollInfo;
 VertScrollInfo: TScrollInfo; // set this data and anything else so one screen update is used.
 procedure AfterHandleConstruction; virtual; // manage startup
 procedure HorzScrollEvent; Virtual;
 procedure VertScrollEvent; Virtual;
 procedure TimerEvent(ID: Integer); Virtual; // internal timer to Project
 function GetHorzScroll: TScrollInfo;
 function GetVertScroll: TScrollInfo;
 function CanUpdateScrollRange: Boolean;
 function IsActiveControl: Boolean;
 procedure MouseDown(Button: TMouseButton; Shift: TShiftState;
 X, Y: Integer); override;
 procedure MouseUp(Button: TMouseButton; Shift: TShiftState;
 X, Y: Integer); override;
 procedure CreateParams(var Params: TCreateParams); override;
 procedure CreateWnd; override; //wincontrol does 1st paint
 Function CapsLockOn: Boolean;
 procedure Paint; override;
 public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 property ScrollBars: TScrollStyle read FScrollBars write SetScrollBars default ssNone;
 property BackGroundColor: TColor read FBKGNDColor write FBKGNDColor;
 property RawCanvas: TCanvas Read GetCanvas;
 property Canvas: TMoveCanvas read FMoveCanvas;
 published
 property Align;
 property Anchors;
 property BorderStyle: TBorderStyle read FBorderStyle write SetBorderStyle default bsSingle;
 property Font;
 property OnClick;
 property OnDblClick;
 property OnEnter;
 property OnExit;
 property OnKeyDown;
 property OnKeyPress;
 property OnKeyUp;
 property OnMouseDown;
 property OnMouseMove;
 property OnMouseUp;
 property OnMouseWheelDown;
 property OnMouseWheelUp;
 property OnPaint: TPaintEvent read FPaintEvent write FPaintEvent;
 property OnDragDrop;
 property OnDragOver;
 property OnStartDock;
 property OnStartDrag;
 property ParentColor;
 property ParentFont;
 property ParentShowHint;
 property PopupMenu;

TabMoveCanvas = class(TObject)// is the New or replaced canvas
 Public
 procedure Arc(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); overload;
 procedure Arc(Const Rect: TRect; Const StartP, EndP: TPoint); overload;
 property ArcDirectionClockWise: Boolean read GetArcDirection Write SetArcDirection;
 procedure BrushCopy(const Dest: TRect; Bitmap: TBitmap;
 const Source: TRect; Color: TColor);
 procedure Chord(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); overload;
 procedure Chord(Rect: TRect; X3, Y3, X4, Y4: Integer); overload;
 procedure CopyRect(const Dest: TRect; Canvas: TCanvas;
 const Source: TRect);
 procedure Draw(X, Y: Integer; Graphic: TGraphic);
 procedure DrawFocusRect(const Rect: TRect);
 procedure DrawCheck(R: TRect; AState: TCheckBoxState; AEnabled: Boolean);
 procedure Ellipse(X1, Y1, X2, Y2: Integer); overload;
 procedure Ellipse(Rect: TRect); overload;
 procedure FillRect(const Rect: TRect);
 procedure FloodFill(X, Y: Integer; Color: TColor; FillStyle: TFillStyle);
 procedure FrameRect(const Rect: TRect);
 procedure LineTo(X, Y: Integer);
 procedure Lock;
 procedure MoveTo(X, Y: Integer);
 procedure Pie(X1, Y1, X2, Y2, X3, Y3, X4, Y4: Integer); overload;
 procedure Pie(Const Rect: TRect; Const StartP, EndP: TPoint); overload;
 procedure Polygon(const Points: array of TPoint);
 procedure Polyline(const Points: array of TPoint);
 procedure PolyBezier(const Points: array of TPoint);
 procedure PolyBezierTo(const Points: array of TPoint);
 procedure Rectangle(X1, Y1, X2, Y2: Integer); overload;
 procedure Rectangle(Const Rect: TRect); overload;
 procedure Refresh;
 procedure RoundRect(X1, Y1, X2, Y2, X3, Y3: Integer); overload;
 procedure RoundRect(Rect: TRect; X3, Y3: Integer); overload;
 procedure StretchDraw(const Rect: TRect; Graphic: TGraphic);
 function TextExtent(const Text: string): TSize;
 function TextHeight(const Text: string): Integer;
 procedure TextOut(X, Y: Integer; const Text: string);
 procedure TextRect(Rect: TRect; X, Y: Integer; const Text: string);
 function TextWidth(const Text: string): Integer;
 function TryLock: Boolean;
 procedure Unlock;
 property ClipRect: TRect read GetClipRect;
 property Handle: HDC read GetHandle write SetHandle;
 property LockCount: Integer read FLockCount;
 property Pen: TPen read GetPen write SetPen;
 property PenPos: TPoint read GetPenPos write SetPenPos;
 property Pixels[X, Y: Integer]: TColor read GetPixel write SetPixel;
 property TextFlags: Longint read FTextFlags write FTextFlags;
 property OnChange: TNotifyEvent read GetOnChange write SetOnChange;
 property OnChanging: TNotifyEvent read GetOnChanging write SetOnChanging;
 function FromCanvas(Rect: TRect): TRect;
 procedure TopLeft(Point: TPoint);
 function ToCanvas(Rect: TRect): TRect; overload;
 function ToCanvas(Point: TPoint): TPoint; overload;
 property Canvas: TCanvas read FCanvas;
 property Brush: TBrush read GetBrush write SetBrush;
 property CopyMode: TCopyMode read GetCopyMode write SetCopyMode default cmSrcCopy;
 property Font: TFont read GetFont write SetFont;
 end;

The idea of the project is to produce a group of useful objects that Delphi does not support for users. I feel a lot of Junk objects from what a be’s, will appear (Torry pages) for removal and a fee will be required to obtain a full licence to manage the project US50. And a web site be supplied in time for practical professionally finished VCL objects that must run on a good range of Delphi versions.
Text info that gives a proper full description is required,
 *.pas required
Original developers names stay with project forever (recondition)
Users try to use other TProject objects where possable.
Example I have made a TTpopupMenu that returns a message to the issuing object. Unless a notable improvement is decided that is a improvement every other Project uses the TTpopupMenu. This means the project grows together yet from a number of contributors and fit under the IDE “T Project” Tab. I’m not here to control Object subject matter but to control standards that they be useful to users and accept notable improvements/additions as they come along.
My project may get action manager added or something from another.
I ask users to use www.delphipages.com/forum with this project.

 This project is totally OOP with good sound coding practices. Developed in Delphi 7, because it’s Totally OOP it’s should work on many versions of Delphi. Why this works is my foundation object of TCustomControl descendant TVCLControl you could say it’s a TGrid without the grid. But even TGrid has messaging Delphi errors to its child Objects, this is overridden in TVCLControl with repairs. From this TVCLControl foundation Delphi OOP becomes simple to produce any VCL Object you like. TTbar has many obvious features TCollection & TCollectionItem TGraphicControl descendants as buttons and children of TVCLControl. TVCLControl has a date limit of January 2020.

This is only just been written, I expect funny errors as there is a lot of subject to this project.
 Contact me on www.delphipages.com under the VCL section for errors, comments and issues please, my identity ‘lexd’.

Email: lexdeanair@hotmail.com but not for programming issues.
I live in Wairoa, New Zealand,
J Lex Dean.

Things to learn in OOP,
This editorial expects you to understand the basic Delphi language for you to follow,
Index
 Methods - are procedures and functions that process data
 Data - allocated memory to hold information - strings, Integers

Run time – when the program is running
Design time - when the programme is designing the code and form. A component has a property ComponentState that contains csloading, csDesigning, csRunTime, csDestroying, and other less important states or already set default for you.
They are often called to manage process for the programmer to design or run the program.

Private data available in this object only
Reintroduce is a good way to override Delphi methods that are not virtual, and you still call Inherited in the method. But you cannot access Private methods so never make private methods virtual ether.
So all protected and higher can be seen as virtual with Reintroduce.
Protected - data that is available to its descendant objects as well
Remember to place data above methods. The data is recorded in a block of memory similar to a record of all the data from all the child objects and the last create in the final object locks the size of the data. This is why the final object has no data allocated, yet it’s able to access child methods and data.
Public methods and properties available to code In run time.
Published methods and properties available in design time and run time.
Objects do not need data, but need methods, each creation of a object allocates a new block of data.

TComponet - is the first object that can be dropped into a form with a mouse. And can hold other components or reference other components. Notification is a set of methods that link other components so when a component is deleted its linked components are told to break the link automatically. It’s the first object to use Object inspector.
TControl - handles mouse inputs and hold dimensions over a canvas.
 TGraphicControl - branch object from TControl and has a canvas to draw on.
 No screen handle or key board.
TWinControl includes keyboard inputs and screen handle. Now able to hold TControls in a list and paint them on its canvas when it gets one.
TCustiomControl - gives a canvas that is extremely complicated to use from TWinControl just as TGraphicControl gives a canvas to TControl. This ability to manage objects in a object is carried on to TForm and is key to form management. Windows has methods that allocate parts of a canvas and gives it a HWND handle so you cannot write out of its set allocated area. To get a HWND handle is a process of working through parent objects to find a handle and issuing handle after handle back to the original object. ClientToScreen & ScreenToClient used extensively with mouse messages also does the same thing to relate mouse screen to canvas positions run though parent objects. And this is the power of simplsty with object orientated programming no matter how many objects deep size and shape and uses.
So when a VCL object code and its separate Data block is made its contents start with TObject, TPersistent...TControl, TWinControl... TMyObject (one instance) and the data block for every object. When I take a TControl of TMyObject out of its parent screen object and write TMyObject (aControl).Method TMyObject simply holds a type list of methods of a particular sort in fact a extended sort of TControl as the TControl methods are in the same place But if It was named incorrectly TEdit(aControl).Method well that would make a mess so the complier often stops you and that’s why the code If “aControl is TMyObject” is used first and the text TMyObject is Looked for in the methods. But if you asked for the object’s Name its looked for in the objects data as its changeable data if it’s used by code or not.
The Named pointer Delphi holds to the object is always to the base of the data Block and the data block always holds the base pointer to the methods Block making a 2 step jump and a addition to get to a selected method. That’s what I believe is happing in Delphi. So running Delphi code is full of assembly branch code, and a big stack of data is held in the processor holding the returns to every temporary jump.

Methods used in an object
GetParentForm(Self); is a very handy method to use at times.
GetSystemMetrics - gives important windows dimensions;
Invalidate – when there is time paint the canvas, this means if a parent does a paint it’s painted any way because it’s not immediate.
RecreateWnd; - stills goes on the windows message stack but is more immediate in its result. This can lead to repainting the same canvas more than once and also gives the user what they need on screen faster.
TControl.WindowProc is key to windows managing messages and distributing the message to the correct methods in the object. Complicated but it works. Breaking up the methods through child objects simplifies this complex messaging system. As you will realise in Delphi many objects start with TControl and they add message methods example - WMLButtonDown(var Message: TWMLButtonDown); message WM_LBUTTONDOWN; or some others into the object to give the object the necessary features it needs to do its Job. This is a way to lose weight or size to the object.
 Now understand Embarcadero in all its wisdom have added internal loops that make things unnecessary complicated example links between TWinControl and TControl that there is no way to write your own version of TWinControl. Also the naming system and because TForm is a descendant of TWinControl some other object cannot replace TWinControl. This also means of you make an object of your own you have to remove conflict with other Delphi objects but using different names in the interface section of your unit (this is a common conflict problem you will have).
Remember the slowest process for the IBM processor is allocating memory, not processing code.
If you set new sizes for TMemoryStream in code and run it you will understand what I mean, it’s still fast but not that fast in comparison at the same time a moving size and relocated memory block gives a lot of power to your code. Learning to manage pointers is also a powerful code tool. Some languages allow a type to receive another named type with its size and this creates a limit to older languages like Delphi as you lose another dimension to your language. Still OOP is a dimension that makes C++ look very very stupid, backward, old school..... even some parts in C# still use backward styles in coding from C++ but Embarcadero are extremely backward with no IDE support to OOP projects and this is what is killing Delphi from the inside yet its not giving away anything to Microsoft Because the code is in the IDE.
 IInterfaceList = interface
 ['{285DEA8A-B865-11D1-AAA7-00C04FB17A72}']
This type of code is to the Delphi IDE for things like popup window used in TCollection or drop down menu item over a VCL object is just a start.

Windows messaging of cause has to be integrated into all languages under windows. Windows run a stack of messages and then empty them according to priority and order. To learn to use messaging takes experience. All windows messages start with “WM_” all Delphi start with “CM_” effectively a name represents a number. Effectively you can send a message with aControl.WindowProc(TMessage(Msg)); aControl is the name of the control you are sending to.
All messages are of the same data size and reconstructed into other layouts go to unit Controls lines 237 to 335 but holding the data inside the record, bit for bit the very same, I’m sure its reconstructed back in windows or the receiving object. Why I am talking messages is because it’s a power full way to get something done including getting information in an object or windows that you simply cannot do with methods. Of course you have Perform to send a message to a known object is another option too. But I cannot identify the difference to WindowProc except you do not use a message record.
 Windows can make visual standard objects for a VCL object, example ExtCtrls unit, CreateParams methods. This is called every time a object is painted so windows knows of changes to what needs to be painted, scrollbars, boarders and many other things, it also sets up BoundsRect and ClientRect inside it.
Personally Canvas has bad insight by windows that is carried into Delphi. Because all Bitmaps have a boundary Canvas should not exist and Bitmap should be called Canvas. And objects should be marked 32 for 32 bit colour...... setting transparent colour also sets the transparent to true automatically to automate the object so it’s even more RAD. Instead it’s a complicated process to manage bitmaps generally.
Use Delphi methods (override) if they are available in your object, before using windows messaging, simply because it’s easier and cleaner code that goes faster.
Use the resources around you where it’s practical like using windows buttons is complicated but windows DrawFrameControl is so much easier to use.
Another windows resource is MyBitmap.Handle := LoadBitmap(0, PChar(OBM_CHECKBOXES)); and refer to the windows unit file with “OBM_CHECKBOXES”.

Most important lesson, it’s nice to understand what the code is doing but sometimes its better t look at the overall picture. You can do maths manually and you can use the calculator to do it faster. The answer is how to achieve the result and not making every part of the resulting code. Or do not get lost in the details, put the picture together or you will not complete the project.

, you drop being a know all to everything (stupid to yourself) you see a section of code that works in another Delphi object. Accept if for what it is, and insert it into your code. Use if not nil before using it in places you are not sure and be surprised it works with a little common sense coding. Example
 private
 FImages: TCustomImageList;
 FImageChangeLink: TChangeLink;
 procedure ImageListChange(Sender: TObject);
 procedure SetImages(const Value: TCustomImageList);
public
 destructor Destroy; override;
 procedure Paint; override;
 published
 property Images: TCustomImageList read FImages write SetImages;
end;

procedure TabTBar.ImageListChange(Sender: TObject);
begin
 if HandleAllocated then Invalidate;
end;

procedure TabTBar.SetImages(const Value: TCustomImageList);
begin
 if FImages <> nil then FImages.UnRegisterChanges(FImageChangeLink);
 FImages := Value;
 if FImages <> nil then
 begin
 FImages.RegisterChanges(FImageChangeLink);
 FImages.FreeNotification(Self);
 end
 else if FImages <> nil then Perform(TB_SETIMAGELIST, 0, FImages.Handle);
 Invalidate;
end;

Being able to identify code that you know works separating it out and copying it over, saves a lot of time to getting the project done. And you will find doing this in future projects to.

 Settings in VCL control
Just like TGrid
BorderStyle := bsSingle; gives a thin 3D border if you want it
DoubleBuffered := true, this means you paint to a separate canvas ClientRect size and the canvas is updated in a single action to remove flicker or blinking. If you are making something like a tool bar you will turn this off.
RawCanvas is directly to the canvas.
Canvas is a moving canvas and the old standard rawcanvas avalible
The moving canvas has TopLeft so you are effectively looking at a small part of a big canvas.
It also contains a tick box and it also contains FromCanvas(Rect: TRect): TRect, ToCanvas(Rect: TRect): TRect, function ToCanvas(Point: TPoint): TPoint for ease of conversion.
ScrollBars set what scrollbars you want
You set HorzScrollInfo, VertScrollInfo and then you invalidate or RecreateWnd for a repaint.
This is all the things for CAD, mapping....... and many other projects.
All mouse, keyboard, containing of child objects features are all ready running waiting to be used.
I believe it’s easier to have them on than working out how to get them on. You can lean to turn them off latter. I hope this project opens the scope up of what is possible for a Delphi programmer.
