
WebCab Probability and Statistics for .NET v3.3

http://www.webcabcomponents.com

Preface

This documentation accompanies the WebCab Statistics and Probability .NET Service.
The purpose of this documentation is to provide a clear and concise description of all as-
pects that are likely to be encountered in real life applications by developers and users of
this suite. This suite includes a wide range a topics from discrete statistics, discrete proba-
bility, standard probability distributions and inferential statistics (in particular, confidence
intervals and hypothesis testing). This suite consists of the following four modules:

1. Statistics - Incorporates evaluation procedures of standard quantitative measures of cen-
trality (mean) and dispersion of discrete numerical data sets. These include weighted
averages, geometric mean, Inter-Quartile range, mean and standard deviation, sample
variance and the coefficient of variation.

2. Discrete Probability - Offering procedures and techniques for studying experiments con-
taining a finite number of events where each event can have one of a finite number of
outcomes.

3. Correlation and Regression - This module contains procedures for evaluating the correla-
tion of the data set consisting of pairs of values. We also allow linear regression analysis
to be carried out on such sets.

4. Standard Probability Distributions - This module contains methods for calculating the
probability, the density, the mean and the variance for several special probability distribu-
tions, such as the Normal, Pareto, LogNormal and Poisson distributions.

5. Confidence intervals and Hypothesis testing - This module offers methods for one and
two tailed confidence intervals or performing hypothesis testing for the mean, differences
between means, proportions and differences between proportions for small and large sam-
ples.

The first chapter of this documentation contains a brief introduction to the most important
implemented features and related system requirements. In chapter two we let the developer
quickly get started with deploying the component suite by detailing deployment techniques
on the most widely used application servers. From the third through to the seventh chap-
ter we detail the mathematical functionality which is embedded within this suite. This
represents the theoretical background of this component’s implemented features. Chapter
eight until twelve contains the programmer’s guide containing a road map for developers
to take advantage of every feature and capability on a number a development platforms.

i

Preface

In chapter twelve we provide details of the examples provided with this components which
illustrate how features detailed within the programmer’s guide can be applied in practice.
Finally, we introduce WebCab Components, its philosophy and approach to serving the
.NET development community with robust and powerful .NET Services.

Good luck with your project and thank you for your interest in our components.

The WebCab Components Team

ii

Contents

Preface i

1 Introduction 1
1.1 Product Description . 1

1.1.1 Overview . 1
1.1.2 Details . 2

1.2 Package Details . 7
1.3 Prerequisites and Compatibility . 7

1.3.1 System Requirements . 7
1.3.2 Compatibility . 8

2 Where do I Start? 9
2.1 What Type of User Are You? . 9
2.2 What Do I Need to Install and Where Can I Get It? 10

2.2.1 Installing the IIS Web server . 11
2.2.2 What Do I Need if I am Using Windows 2003? 12

2.3 Deploying the .NET Service . 14
2.3.1 Deploying a Component . 14
2.3.2 Deploying an XML Web Service . 15

2.4 Using the DLLs inside an IDE . 17
2.4.1 Using the DLL within a Visual Studio .NET project 17
2.4.2 Using the DLL within a Borland’s C# Builder project 17

2.5 Client Examples . 18
2.5.1 Running the Console Client Example 18
2.5.2 ASP.NET Client Example . 19
2.5.3 XML Web service examples . 19

2.6 Testing the Component . 21
2.6.1 Accessing the Online ASP.NET Demo 21
2.6.2 Online XML Web service examples 22
2.6.3 Using .NET Web Service Studio . 23

3 Statistics Documentation 26
3.1 Data Presentation . 26

3.1.1 Frequency Tables . 26

iii

CONTENTS CONTENTS

3.1.2 Relative Frequency Table . 29
3.1.3 Cumulative Frequency Tables . 29

3.2 Basic Statistics . 30
3.2.1 Measures of Centrality . 30
3.2.2 Measures of Dispersion . 31
3.2.3 Measures of Relative Location . 32

3.3 Grouped Data . 33
3.3.1 Example of a Grouped Data Set . 34
3.3.2 Quantitative Measures of Grouped Data 34

4 Discrete Probability Documentation 36
4.1 Random Variables . 36

4.1.1 Examples of Random Variables . 36
4.1.2 Associated Probability Distribution 38
4.1.3 Cumulative Distribution Function 39
4.1.4 Expected Values of a Random Variable 40
4.1.5 Variance of a Random Variable . 40

4.2 Discrete Probability . 41
4.2.1 Calculating the Discrete Probability 41

4.3 Basic Laws of Probability . 41
4.3.1 The Addition Law . 42
4.3.2 Conditional Probability . 42
4.3.3 Complementary Events Probability 42

5 Correlation and Regression Documentation 43
5.1 Overview . 43
5.2 Significant Figures . 43
5.3 Linear Correlation . 44

5.3.1 Pearson’s Product Moment Correlation Coefficient 44
5.3.2 Significance Test for Pearson’s Coefficient, r 45

5.4 Non-parametric or Rank Correlation . 46
5.4.1 Spearman’s Rank Correlation Test 46
5.4.2 Kendall’s Rank Correlation Coefficient 47

5.5 Linear Regression . 49
5.5.1 The Least Squares Regression Line 49
5.5.2 The Least Square Regression Line for y on x 49
5.5.3 Average of the Regression Error . 50

5.6 Prediction Intervals for the Conditional Mean 50
5.6.1 The Coefficient of Determination 51
5.6.2 Residuals . 52

6 Standard Probability Distributions Documentation 53
6.1 Discrete Probability Distributions . 53

6.1.1 Binomial Distribution . 53

iv

CONTENTS CONTENTS

6.1.2 Poisson Distribution . 55
6.1.3 The Poisson approximation to the Binomial Distribution 57

6.2 Continuous Probability Distributions . 57
6.2.1 Normal Distribution . 57
6.2.2 Standard Normal Distribution . 59
6.2.3 The Normal approximation to a Binomial Distribution 60
6.2.4 Binomial Proportions . 60
6.2.5 Lognormal Distribution . 60
6.2.6 Pareto Distribution . 62
6.2.7 Uniform Probability Distribution 63
6.2.8 Exponential Probability Distribution 64

6.3 Supplementary Material on Extended Trapezoidal rule 64

7 Hypothesis Testing Documentation 66
7.1 Confidence intervals . 66

7.1.1 Confidence intervals for large or small samples 67
7.1.2 One or two sided confidence intervals 67
7.1.3 Confidence intervals with one or two samples 68
7.1.4 Confidence intervals for the mean and percentages 68

7.2 Hypothesis (or significance) testing . 69
7.2.1 Hypothesis tests for means or percentages 70
7.2.2 Hypothesis testing with one or two samples 71
7.2.3 Hypothesis testing with large or small samples (t-distribution) . . . 72

7.3 Types of error . 73
7.4 Conclusions . 73

8 Programmer’s Guide for Microsoft Office 75
8.1 Developing with VBA from Office . 75

8.1.1 Open the Visual Basic Editor . 75
8.1.2 Add a Code Module . 76
8.1.3 Declare a Subroutine . 76
8.1.4 Add a Reference to This Product 76
8.1.5 Declare a Class Instance Variable 78
8.1.6 Create a Class Instance . 79
8.1.7 Call a Class Method . 80
8.1.8 Display the Method Result . 80
8.1.9 Run the Subroutine . 80
8.1.10 A Generic VBA Example for Office 82

8.2 Integrating with Microsoft Excel . 83
8.2.1 Open the Visual Basic Editor . 83
8.2.2 Add a Code Module . 83
8.2.3 Declare a Function . 83
8.2.4 Add a Reference to This Product 84
8.2.5 Declare a Class Instance Variable 84

v

CONTENTS CONTENTS

8.2.6 Create a Class Instance . 84
8.2.7 Call a Class Method . 85
8.2.8 Store the Method Result as a Function Return Value 85
8.2.9 Insert the Function in your Worksheet 85

9 Programmer’s Guide for Visual Studio 6 89
9.1 Developing with Visual Basic 6 . 89

9.1.1 Add a Reference to This Product 89
9.1.2 Declare a Class Instance Variable 90
9.1.3 Create a Class Instance . 91
9.1.4 Call a Class Method . 92
9.1.5 A Generic Visual Basic Example 92

9.2 Developing with Visual C++ 6 . 93
9.2.1 Open a New or Existing Project . 94
9.2.2 Add All COM Specific ’include’ Declarations 97
9.2.3 Call ”CoInitialize” . 97
9.2.4 Import the Type Library for this Product 98
9.2.5 Connect to a COM Server . 98
9.2.6 Declare the Parameter Types and Values 99
9.2.7 Declare the Return Type . 102
9.2.8 Call the Method . 102
9.2.9 Call ”CoUninitialize” . 103
9.2.10 A Generic Visual C++ Example . 103

10 Programmer’s Guide for Borland C++ Builder 106
10.1 Developing with Borland C++ Builder . 106

10.1.1 Open a New or Existing Project . 107
10.1.2 Add all COM Specific ”Include” Declarations 109
10.1.3 Call ”CoInitialize” . 109
10.1.4 Create a Class Instance . 110
10.1.5 Obtain a Method ID . 111
10.1.6 Declare the Parameter Values and Types 111
10.1.7 Declare the Return Type . 112
10.1.8 Call the Method . 112
10.1.9 Call ”CoUninitialize” . 113
10.1.10A Generic Borland C++ Builder Example 113

11 Programmer’s Guide for .NET 116
11.1 Developing with .NET Class Libraries . 116

11.1.1 Stand-alone C# .NET Applications 116
11.2 Developing with XML Web Services . 118

11.2.1 Deploying the XML Web Services 118
11.2.2 Writing XML Web Service Clients 118
11.2.3 Writing Console XML Web Service Clients 119

vi

CONTENTS CONTENTS

11.2.4 Importing Web services into Visual Studio .NET projects 121
11.3 Connecting to a Database with our .NET Libraries 122

11.3.1 Overview . 122
11.3.2 The ADO Mediator . 122

11.4 Statistics Module Functionality . 127
11.5 Discrete Probability Module Functionality 127

12 Examples 131

13 Guide to WebCab Components 132
13.1 The Company . 132
13.2 Presentation of Products . 132
13.3 Supported Clients, IDEs, Containers and DBMSs 132
13.4 Transparent Functionality . 133
13.5 Company Culture and Activity . 133
13.6 Product Life cycle . 133
13.7 Support, Warranty and Upgrades . 133

vii

Chapter 1

Introduction

1.1 Product Description

1.1.1 Overview

This suite consists of five packages: Statistics, Discrete Probability, Standard Probability
Distributions, Hypothesis Testing, and Correlation Regression which offer the following
functionality.

Statistics Module

The Statistics module incorporates topic from data presentation (incl. standard, relative
and cumulative frequency tables), Basic Statistics (incl. measure of centrality, dispersion
and relative location) and Grouped Data (incl. Sample Mean, Variance and Standard
Deviation).

Discrete Probability Module

The Discrete Probability module encapsulates the probabilistic study of finite set of events
(i.e. discrete probability) and experiments with a finite number of outcomes (i.e. discrete
random variables). Including: probability measures, union/intersection law, condition-
als/complementary probability; cumulative distribution functions, mean/variance/expected
return of Random Variable.

Correlation and Regression Module

Allows the user to investigate relationships between two variables. These finding can be
used to predict one variable from the given values of other variables. We cover linear
(Spearman’s, t-test, z-transform) and rank (Spearman’s, Kendall’s) correlation, linear re-
gression and conditional means.

1

Introduction Chapter 1

Standard Probability Distributions Module

This module assists in the development of applications that incorporate the Binomial,
Poisson, Normal, Lognormal, Pareto, Uniform, Hypergeometric, Weibull and Exponen-
tial probability distributions. The probability density function, cumulative distribution
function and inverse, mean, variance, Skewness and Kurtosis are implemented where ap-
propriate and/or their approximations for each distribution. We also offer methods which
randomly generate numbers from a given distribution.

Confidence Intervals and Hypothesis Testing Module

Within this component we present two aspects of inferential statistics known as confidence
intervals and hypothesis testing. Confidence intervals determine the level of confidence in
pointwise statistics (e.g. mean, variance) of the sample in relation to the statistics for the
entire population. With hypothesis testing the user can judge which of several hypotheses
sampled evidence best supports.

1.1.2 Details

This suite offers the following functionality:

Statistics Module

� Data Presentation

– Frequency Tables - Evaluate the Frequency table with respect to open left or
open right boundary convention.

– Cumulative Frequency Tables - Evaluate the Cumulate Frequency from
above or below with respect to the open left or open right boundary convention.

– Relative Frequency Tables - Evaluate the Normalized (or Relative) Fre-
quency Table from above or below with respect to the open left or open right
boundary convention.

� Measures of Centrality

– Arithmetic Mean - a measure of centrality for quantitative data.

– Median - the middle value when the observations have be ordered by magnitude

– Mode - the most frequently occurring observation.

– Weighted Average - the arithmetic average of a weighted set

– Geometric Mean - the nth root of the product of all n numerical observations.

� Measures of Dispersion

– Range - the difference between the largest and smallest observations.

2

Introduction Chapter 1

– Inter-Quartile Range (IRQ) - a measure of dispersion which is not affected
by extreme values.

– Mean Deviation - Evaluates the average difference between the mean of the
observations.

– Sample Variance - The variance from the mean of a Sample of observations.

– Sample Standard Deviation - Square root of the Sample Variance which has
the same units as the observations.

– Coefficient of Variation - Relative value of the Standard deviation with re-
gard to the mean.

� Measures of Relative Location

– Percentile - The i-th percentile of a data set is the value such that at least i
percent of the data set items are less than or equal to this value.

– z-Score - Evaluates the number of standard deviations of a given element of
the data set is from the mean.

– Chebyshev’s Theorem - Calculate the percentage of items that must be
within a specified number of standard deviations from the mean.

� Grouped Data

– Sample Mean - Calculate the mean of a sample of grouped data.

– Sample Variance - Evaluate the variance of a sample of grouped data.

– Samples Standard Deviation - Evaluate the standard deviation of a sample
of grouped data.

Discrete Probability Module

� Random Variables

– Set/Get Random Variable - Set (and get) a Random Variable to an internal
tables of random variables.

– Associated Probability Distribution - Evaluation of the Probability Distri-
bution associated to the Random Variable considered.

– Cumulative distribution function - of a Random Variable set or passed via
parameters.

– Variance - the variance of a random variable from the internal table or passed
via parameters.

– Expected value - the expected value of the random variable from the interval
table or passed via parameters.

� Discrete Probability

3

Introduction Chapter 1

– Set Probability Measure - Set (and get) the probability measure on a discrete
set.

– Calculate Probability - Calculates the probability of a number of independent
events.

– Union - Calculates the probability of one event occurring from two collections
of events.

– Intersection - Calculates the probability of the intersection of two sets of events
occurring.

– Conditional Probability - Evaluates the probability of an event assuming
that another event takes place.

– Complementary Probability - Evaluate the probability of a set of events not
taking place.

Correlation and Regression Module

� Statistic quantities

– Mean - calculates the arithmetic mean.

– Sample variance - calculates the sample variance.

� Correlation coefficients

– Pearson’s product moment correlation coefficient - the most widely used
linear correlation coefficient for a data set.

– t-test, z-transform - provides an analytic framework to establishing a confi-
dence level for Pearson’s coefficient.

– Spearman’s and Kendall’s rank correlation coefficients - measure the
association between two variables of an ordered data set.

� Regression line - using the method of least squares to determine the line of best
fit.

� Confidence interval for the conditional mean - determines the confidence in-
terval for the true regression line.

Standard Probability Distributions Module

� Discrete Random Variables

– Binomial distribution - used to model an experiment which has two outcomes
‘successes’ and ‘failures’ of elements from a finite set.

– Poisson distribution - used to model instances such as the number of cars
arriving at a petrol station over 1 hour.

4

Introduction Chapter 1

– Poisson Approximation of the Binomial distribution - Approximation
of the Binomial distribution used when the number of trial is large and the
probability of is small.

– Hypergeometic Probability Distribution - closely related to the Binomial
probability distribution.

– Normal Approximation of the Binomial Distribution - approximation of
the Binomial Probability Distribution by the Normal Probability Distribution.

� Continuous Random Variables

– Normal distribution - Used in a broad range of applications include finance
(asset price evolution,...), scientific measurement,...

– Log Normal distribution - Used for example when modeling investment re-
turns and the distribution of insurance claim sizes.

– Pareto Distribution - Useful for cautiously modeling the distribution of large
insurance claims.

– Uniform Distribution - Used to model situations where the probability is
proportional to the length of the interval.

– Exponential Distribution - Can be used to describe situations such as the
time between arrivals at a petrol station.

– Weibull Distribution - Used within the study of the reliability of precision
engineering parts.

� Numerical Methods

– Extended Trapezoidal Rule - this method is implemented in order to evalu-
ate the non-analytic probability density functions of the Normal and Lognormal
distributions.

Hypothesis Testing Module

� Normal Confidence Interval - used when large samples with > 30 elements are
considered.

– Two-sided confidence interval for the mean, proportions, difference between
means and difference between proportions.

– One-sided confidence interval for the mean, proportions and difference be-
tween means.

– Estimating the sample size for a given confidence of the mean.

– Estimating the sample size for a given confidence of the proportions.

� Student Confidence Interval - used when small samples with ≤ 30 elements are
considered.

5

Introduction Chapter 1

– Two-sided confidence interval for the mean and the difference between
means.

– One-sided confidence interval for the mean.

� Normal Hypothesis Testing - used when large samples with > 30 elements are
considered.

– Two-sided hypothesis testing for the mean, proportions, difference between
means and difference between proportions.

– One-sided hypothesis testing for the mean, proportions, difference between
means and difference between proportions.

� Student Hypothesis Testing - used when small samples with ≤ 30 elements are
considered.

– Two-sided hypothesis testing for the mean, proportions and the difference
between means.

– One-sided confidence interval for the mean, proportions and difference be-
tween means.

This product also has the following technology aspects:

� 3-in-1: .NET, COM, and XML Web services - Three DLLs, Three API Docs,
Three Sets of Client Examples all in 1 product. Offering a 1st class .NET, COM,
and XML Web service product implementation.

� Extensive Client Examples - Multiple client examples including .NET (C#, VB.NET,
C++.NET), COM and XML Web services (C#, VB.NET)

� ADO Mediator - The ADO Mediator assists the .NET developer in writing DBMS
enabled applications by transparently combining the financial and mathematical
functionality of our .NET components with the ADO.NET Database Connectivity
model.

� Compatible Containers - Visual Studio 6 (incl. Visual Basic 6, Visual C++ 6), Vi-
sual Studio .NET (incl. Visual Basic .NET, Visual C#.NET, and Visual C++.NET),
Borland’s C++ Builder (incl. C++Builder, C++BuilderX, C++ 2005), Borland
Delphi 3 - 2005, Office 97/2000/XP/2003.

� ASP.NET Web Application Examples - We provide an ASP.NET Web Appli-
cation example which enables you to quickly test the functionality within this .NET
Service.

� ASP.NET Examples with Synthetic ADO.NET - we use a ASP.NET service to
perform component calculations on SQL database columns from a remote DBMS. We
apply a component’s function to certain rows from the database and list the output in
HTML format. This is a powerful feature since it allows you to perform calculations

6

Introduction Chapter 1

in a DBMS manner without having to code the C# to SQL database transaction
yourself as it is all done by the ASP within the .NET Framework managed server
side environment.

1.2 Package Details

This .NET Service package contains the following:

� Introductory Text File (README.TXT)

� License Agreement

� Documentation in PDF Format

– Product Description

– System Requirements

– Compatibility Issues

– Deployment Guide (How to get started?)

– Mathematical Documentation

– Programmer’s Guide

– Examples

– Guide to WebCab Components

� Class Documentation

– Class Descriptions

– Methods Descriptions

� Deployment Files (DLLs)

� Examples and Related Source Code Files

� WebCab Components Brochure

1.3 Prerequisites and Compatibility

1.3.1 System Requirements

� Microsoft Windows
r

XP/2000/2003 family

� Pentium III 500 MHz

� 64MB RAM

� .NET Framework 1.0 (or higher)

7

Introduction Chapter 1

1.3.2 Compatibility

Component Type

� ASP.NET XML Web service

� .NET Class Library

� COM Component

Built Using

� Microsoft .NET Framework SDK

8

Chapter 2

Where do I Start?

Start using the Probability and Statistics for .NET v3.3 .NET Service right away by following
the few quick and simple steps described in this chapter. If you require additional information or
have problems with the installation and use of this .NET Service then please do not hesitate to
contact us via our support forum at: http://www.webcabcomponents.com/support/index.php

2.1 What Type of User Are You?

.NET Components or XML Web Services

The prerequisite Windows operating system components you will need to have installed on
your local machine will depend on the way in which you intend to use our .NET Service.
In particular, there are two distinct deployment architectures in which our product can be
used:

� Class Library - those wishing the use our .NET Components functionality directly
within there .NET Applications. This category includes those who wish to use our
component within Microsoft’s Visual Studio .NET or Borland’s C#Builder projects,
or those who simply want to register the DLL class library onto there local machine
for consumption by local or remote applications.

� XML Web service/ASP.NET - those wishing to deploy either an ASP.NET based
Client server application and an XML Web service.

Chapter Overview

Within the remainder of this chapter we will detail how to install and configure the nec-
essary Windows components, deploy the .NET Components or XML Web Services and
finally how to run examples associated within these two deployment scenarios1.

1Later within this PDF documentation within the Programmers Guide we will cover development
techniques which can be employed for either composing larger applications or building clients for these
deployed components and Web services

9

http://www.webcabcomponents.com/support/index.php

Where do I Start? Chapter 2

The remainder of this chapter is structured in the following way, please feel free to skip
any sections which are not relevant to you:

1. Configuration - Describes how to configure the Windows deployment/development
platform for .NET based applications, including Web Services.

2. Deployment - Details the deployment of the .NET Service as a .NET Component
or as a XML Web Service.

3. Using the DLLs inside an IDE - We detail here how to import the .NET Class
Libraries DLLs into Microsoft’s Visual Studio .NET and Borland’s C# Builder.

4. Clients - Explains client examples provided with this .NET Service

5. Live Demos - Details the functionality of the Online Web Application Demos.

2.2 What Do I Need to Install and Where Can I Get

It?

In order to deploy and then use a .NET Component within your applications you are re-
quired to have (or install) the following Windows component onto your Windows operating
system:

� .NET Framework

If you wish to deploy either ASP.NET or XML Web services then you will also be required
to install:

� Microsoft’s Internet Information Server (IIS)

In order to develop .NET based applications (i.e. compile C#.NET source code) you will
also need to have the following Windows Components installed:

� .NET Framework SDK

Getting the .NET Platform

The .NET Framework’s installation package comes in the following two flavors:

� .NET Framework SDK (approx. 110MB)

� .NET Framework, Redistribution package (approx. 23MB)

Those wishing to develop applications using the .NET Framework will require the .NET
Framework and the .NET Framework SDK installed onto the development machine. Whereas
those who only wishing to deploy .NET Applications and Services will require only the
.NET Framework (also known as the .NET Framework Redistribution package). The latest
version of these packages can be downloaded from http://msdn.microsoft.com/downloads.

In order to run our ASP.NET and Web service demos you are also required to have Mi-
crosoft’s IIS Web server installed and started.

10

http://msdn.microsoft.com/downloads

Where do I Start? Chapter 2

Installing the .NET Framework

Through the Add/Remove Programs feature of the Control Panel you are able to dis-
cover which version (if any) of the .NET Framework you are currently running. If you
intend to upgrade to a later version of the .NET Framework then you are presently run-
ning then we strongly suggest that you first uninstall all previous versions of the .NET
Framework first. This is due to the fact that some applications will use the earliest in-
stalled version of the .NET Framework rather than the latest edition.

You can then proceed to install the latest version of the .NET Framework by just exe-
cuting the .NET Framework installation package by following through the dialog within
the installation program.

Remark Please note that Microsoft will ensure backward compatibility of the .NET
Framework. That is, application developed under v1.0 for example will run and behave in
a similar fashion under later releases of the .NET Framework.

2.2.1 Installing the IIS Web server

In order to deploy and run ASP.NET or XML Web services you are required to have the
relevant pieces of the “Applications Server” stack installed onto the deployment Windows
machine. The key piece of this infrastructure stack is Microsoft’s IIS Web server.

On any Windows machine you can check to see whether the IIS Web server is installed and
running by opening the following page within a web browser http://localhost. If the IIS
Web server is installed and running then you will be presented with either a placeholder
page similar to the following:

11

http://localhost

Where do I Start? Chapter 2

If you already have a web site deployed into the root directory of the IIS Web server then
the home page of this web site will be displayed.

Remark By requesting the page http://localhost, the local IIS Web server will be auto-
matically restarted if it is not already running.

Installation Process

If the IIS Web server is not installed onto your local machine then you may install it
through using the Windows Program installation tool. To access this tool select:

Settings > Control Panel > Add or Remove Programs

Now click on the button, Add\Remove Windows Components. A window should pop-
up in which a number of Windows components are listed, one of these items should read
Internet Information Services (IIS). You should select the click box for this service
and install it by clicking the Next button.

2.2.2 What Do I Need if I am Using Windows 2003?

Microsoft’s Windows 2003 is the first Windows operating system that has been designed ex-
plicitly to host .NET Applications. Though, Windows 2003 has the .NET Framework v1.1
embedded within the operating system you will still need to configure the IIS Web server
or the .NET Framework SDK if you intend to either deploy ASP.NET based Applications
or use the Windows 2003 machine to develop .NET based Applications and Services.

12

http://localhost

Where do I Start? Chapter 2

Installing the IIS Web server onto Windows 2003

The IIS Web server for the Windows 2003 operating system is not installed by default.
Therefore, if you did not explicitly request the deployment of the system component known
as ‘Application Server’ during the installation of Windows 2003. You will need to manu-
ally install this Windows 2003, component if you wish to deploy ASP.NET or XML Web
services to your local machine. For all Windows platforms the deployment process of the
IIS Web server proceeds in a similar fashion via the control panel interface.

In order to deploy the ‘Applications Server’ components first select Add/Remove Win-
dows Components from the Add/Remove Programs control panel interface.

Once the ‘Application Server’ is selected by clicking on the Details button you will be
presented with:

13

Where do I Start? Chapter 2

Remarks

� As you can see from the above screen shot by default the ASP.NET, Enable net-
work COM+ access and Internet Information Services (IIS) have been se-
lected which is sufficient for the deployment of nearly all .NET Framework based
Applications and Services.

� The Windows 2003 platform contains a thoroughly updated infrastructure stack con-
cerning the delivery of ASP.NET and XML Web services. This includes a new
ASP.NET container which is closely integrated with the IIS Web server. This update
contains several enterprise level .NET related features concerning the management
of services (automatic startup, shutdown of services and the server itself), security
(lockdown of ports and unused services), scalability (load balancing) and easier man-
agement (Component services and IIS management console). In our opinion the
Windows 2003 platform offers a significantly more robust platform than early ver-
sions of the Windows platform in which to deploy .NET Applications and Services.

2.3 Deploying the .NET Service

If you installed this product using the MSI installer then the .NET Class Libraries DLLs
should already be registered within your global assembly cache. In order to use the corre-
sponding XML Web Service implementation you will need to follow the deployment guide
below.

In case you installed using a Zip package or wish to install the .NET Class Libraries
onto another Windows machine we explain below how to manually deploy our .NET Class
Libraries.

2.3.1 Deploying a Component

Once the .NET Framework has been installed onto the deployment machine the component
(i.e. the DLL), can be deployed and registered. By registering the component it will become
available to local and remote .NET Applications and Services.

Making your components (locally) available

The easiest and quickest means to deploy the DLL component files, is to simply copy them
to one of the following two directories on your Windows machine:

� WINDOWS\System

� Application directory - the directory in which the .NET Application which will
consume the component is located.

When your Application is executed Windows will automatically look in one of these loca-
tions for the DLL file with it wishes to import.

14

Where do I Start? Chapter 2

Making the Components Globally available?

The above deployment technique is straightforward but has the restriction that is does not
allow for any custom configuration of the deployment environment which may be required
by the .NET Application which will consume the component. Moreover, such deployment
techniques do not allow the components (i.e. DLL’s) to be effectively shared between two
or more applications. In order to allow the components to be used by several applications
you must deploy the components within the Global Assembly Cache.

Remark The Global Assembly Cache within the .NET Framework plays a similar
role to that of the CLASSPATH environment variable within the Sun Java platform.

A Component can be deployed to the Global Assembly Cache in one of two ways:

� Microsoft Windows Installer 2.0 - Recommended for use on production servers.

� Global Assembly Cache tool (Gacutil.exe) - Recommended only for use on develop-
ment or test servers.

Please note, in order to use the Assembly Cache tool you are required to have the .NET
Framework SDK installed and to create a Windows installer you will need the Windows
Installer SDK v2.0. For further details concerning the Windows Installer technology we
refer the interested reader to the Visual Studio .NET documentation or the MSDN section
of Microsoft’s website.

The Global Assembly Cache Tool is run from the DOS command prompt. In order to
deploy the assembly WebCab.Libraries.StatisticsDemo.dll, contained within the present
directory you must input the command:

Gacutil.exe /i WebCab.Libraries.StatisticsDemo.dll

Using the DLL within your own Applications

Within the Library directory of the installation package you will find the class library
assembly (DLL) for Probability and Statistics. There are several ways you may choose to
use this DLL within your applications.

2.3.2 Deploying an XML Web Service

Once the .NET Framework and the IIS related infrastructure is installed the actual deploy-
ment of an ASP.NET Application or an XML Web service just involves copying a DLL file
and several ASMX files into given directories within the IIS Web server root file directory.

Installation Process

15

http://msdn.microsoft.com

Where do I Start? Chapter 2

Within the XML Web service folder within this installation package are the resources for
deploying the Web service of the Probability and Statistics. In order to install and start
using the XML Web service functionality you will need to perform the following steps:

� Deploy the XML Web service assembly (DLL) onto your local IIS Web server. This
is accomplished by copying the contents of the ‘bin’ folder of the current directory
to the ‘bin’ folder of the local IIS root directory, which under the default installation
is C:\Inetpub\wwwroot.

� Deploy all .asmx pages inside the IIS Web server, by copying all the folders located
under the XML Web service folder located under the current directory to the IIS
root directory.

� Run the WSDL tool in order to generate all XML Web service proxies. This is done
by running the following line at the command prompt:

wsdl http://localhost/<directory name>/<XML Web service>.asmx

where <directory name> is the name of the subdirectory of the IIS root in which
the XML Web service is deployed and <XML Web service> is the name of the Web
service which you wish to generate a proxy for.

Remarks

� All generated proxies are used as described in the CHM documentation of this prod-
uct.

� If the Web service is not being locally run then the ‘localhost’ should be replaced
with the host name of the computer where the Web service is deployed and running.

� You may be using another equivalent ASP.NET Web server, in which case the above
deployment procedure may differ slightly in detail but will still involve the same basic
steps.

Testing the Deployment

You can easily test an XML Web service deployment by using any compatible web browser.
That is, to test the deployment open a compatible web browser (for example Internet Ex-
plorer) and open the following page:

http://localhost/<directory name>/<filename>.asmx

where <directory name> is the name of the subdirectory of the IIS directory root where
the Web services are located and <filename> is the name of one of the .asmx files located
inside the <directory name> folder. As soon as the browser displays the page correctly
you are sure that the corresponding XML Web service has been properly installed.

16

Where do I Start? Chapter 2

2.4 Using the DLLs inside an IDE

2.4.1 Using the DLL within a Visual Studio .NET project

If you are developing a Visual Studio .NET project and wish to use our DLLs components
functionality then you may add the DLL to the project reference. This is performed by
using the Project > Add Reference... menu item.

2.4.2 Using the DLL within a Borland’s C# Builder project

If you are developing a C#Builder project and wish to use our DLLs components function-
ality then you may deploy and then add the assembly to your project solely from within
C# Builder.

To deploy the DLL select from the menu, Component > Installed .NET Components Then
click on the ‘Select an Assembly’, to select the DLL from the file system.

Once the DLL component is deployed you may add the DLL to your C# project by right
clicking on your project within the “Project Manager” and selecting “Add reference” as
show below:

17

Where do I Start? Chapter 2

Alternatively, you could use the equivalent link with the menu, Project > Add Reference.

Now an ‘Add reference’ window will pop-up, in which you should select the assembly
you wish to add to your project and then click OK.

2.5 Client Examples

Within this section we describe the clients which have been provided with this .NET
Service. In particular, we will describe:

1. Console Client Examples

2. ASP.NET Client Examples

3. Web Service Client Examples

2.5.1 Running the Console Client Example

In order to run the console demonstration examples you must start a DOS Command
Prompt. On a Windows XP machine this can be achieved by:

START > Programs > Accessories > Command Prompt

Once the command prompt is started you should navigate to the Librares\Client sub-
directory of the installation directory2 using the cd command. The Client subdirectory
is structured into subdirectories corresponding to client examples. Every client example
should be accompanied by a compile.cmd file, which when run will compile its corre-
sponding client. After compilation, the only thing left to do is launch into execution the
generated executable file(s).

For further technical details you should read the README.TXT files located inside
the Client subdirectories.

2Usually C:\Program Files\WebCab Components\Probability and Statistics.

18

Where do I Start? Chapter 2

2.5.2 ASP.NET Client Example

Within the \NET Libraries\ASP.NET Examples, folder of this package we have pro-
vided a set of tailor made ASP.NET examples for the WebCab Probability and Statistics
for .NET v3.3 .NET Service.

In order to start using these ASP.NET examples, please go through the following steps:

1. Deploy the ASP.NET Pages and Resources

(a) Copy the contents of the ‘Statistics ASP.NET Examples’ folder located in the
current directory to a location under your IIS (or another compatible ASP.NET
web server) root directory. This is usually ‘C:\Inetpub\wwwroot’ or a similar
path with a different drive letter.

(b) Secondly, copy the contents of the ‘bin’ subfolder of the current directory to the
‘bin’ subfolder of your IIS root directory. If the ‘bin’ directory does not exist
inside the IIS root directory, you will be required to create it.

2. Run the ASP.NET Examples

(a) Open an Internet browser3 and type in the following address:

http://localhost/Statistics ASP.NET Examples/index.html

In case you chose to copy the ‘Statistics ASP.NET Examples’ directory to a
subdirectory of your IIS root directory, you will need to include the full path to
it inside the above URL. Also, if you have deployed these ASP.NET examples
to another .NET machine, you should replace ‘localhost’ with the name of that
machine.

Remark An online version of these ASP.NET examples can be found at:

webcabcomponents.com/dotNET

Using the Example

Further explanation regarding the use of this example can be found within the ‘Accessing
the Online Demo’, section of this guide which details the use of the online version of this
ASP.NET example.

2.5.3 XML Web service examples

Within the directory \XML Web Services\Client\, you will find C# application client
examples which make use of the financial and mathematical functionality provided by the
XML Web services implementation of the WebCab Probability and Statistics .NET Service.

3E.g. Internet Explorer, Opera, Mozilla.

19

http://www.webcabcomponents.com/dotNET

Where do I Start? Chapter 2

Remark In order to run and access the Web service examples it is necessary to have
the IIS web server and a compatible internet browser (for example Internet Explorer 5 or
higher) installed onto your local machine.

Please go through the following steps in order to test these client examples:

1. Before running or even compiling these XML Web service client examples you will
have to deploy all Probability and Statistics XML Web services located one directory
level above to your local IIS server or an IIS server your machine can connect to.
This is accomplished by copying the contents of the ‘bin’ folder, located one level
above in the directory structure, to the ‘bin’ folder of the IIS root directory, usually
C:\Inetpubwwwroot. You will also need to copy the ‘StatisticsDemo’ folder to the IIS
root directory.

2. Browse through each subfolder of the current directory and locate every ‘compile.cmd’
compilation script file. There is one compilation script for every client example. Every
client example requires certain XML Web services to connect to, which you may
determine by running the compilation script. The reported errors should correspond
to the XML Web services the client example requires.

3. Run the WSDL tool in order to generate XML Web service proxies for every XML
Web service required by each client example. This is done by running the following
line at command prompt:

wsdl http://localhost/StatisticsDemo/<XMLWebservice>.asmx

where <XMLWebservice> is the name of the required XML Web service and ‘localhost’
should is the host name of the computer where the IIS server is running, in case it’s
not this machine.

Make sure you are running this command from directory containing the compila-
tion script.

4. Run the ‘compile.cmd’ compilation script file again. If the right XML Web service
proxies have been generated for its client examples, the compilation script will com-
pile all source code files and generate a .NET executable file (.exe). If the script still
results in an error, please go through the previous step again, making sure you gener-
ate the XML Web service proxy classes required by the client example corresponding
to this compilation script.

5. Run the generated executable files. Running the executable files will allow you to
test the client examples.

You may compile the client examples (after having generated the XML Web service prox-
ies) and run their executable files as you go through each subfolder, since every client

20

Where do I Start? Chapter 2

example is independent of each other.

If you wish to customize a particular client example after having run it, please feel free to
adapt its source code files accordingly and run the compilation script again. Note that you
will not need to regenerate the XML Web service proxy classes.

2.6 Testing the Component

2.6.1 Accessing the Online ASP.NET Demo

By far the easiest way to test the functionality of this .NET Service is to view the on-
line demo. The online demo can be accessed from our .NET Homepage by clicking the
‘[ASP.NET]’ link corresponding to this Application. Once you click on the link the follow-
ing pop-up Window will appear:

Fig: Interface of the ASP.NET online Web Application

Compatible Web Containers

This demo runs inside an online web container and demonstrates the ASP.NET technology.
The demo can be accessed through a web browser and is compatible with Internet Explorer
5, Netscape Navigator 4, Netscape 6, Opera 5 and higher.

21

http://www.webcabcomponents.com/dotNET/index.shtml

Where do I Start? Chapter 2

Selecting a method to test

After clicking on the ‘[ASP.NET]’ link for this application from our home page the Web
demo will launch within a new browser window. To order to select a method from this
application use the drop-down menu on the left hand side of the screen to navigate through
all implemented functions. The menu lists all the components on the first level and their
corresponding functions on the second and third level. Click on the plus icon in order to
expand the component menu and then click a function item to select it.

Inputting data

The selected function will be displayed on the right hand panel of the new window accom-
panied by its description and parameter characterization. Once the nature of the method is
clear you may test the method by inputting the parameters within the text boxes provided
or associating a database table field using our database management tool.

Running the demo using text boxes

Please input the value of each parameters in to the corresponding text box while paying
attention to each parameter description. When all the parameters has been input, press
the “Get Result” button on the right-hand side and towards the bottom of the screen in
order to request the solution from the server-side component. If by chance any parameters
are out of range you will be prompted to enter a correct value before proceeding.

2.6.2 Online XML Web service examples

The XML Web Services contained within this package have also been deployed online. The
Web service demo is accessed through our .NET Homepage by clicking on the ‘[WSDL]’
link corresponding to this Service. Once you click on the link the following pop-up Window
will appear:

22

http://www.webcabcomponents.com/dotNET

Where do I Start? Chapter 2

Fig: Interface of the Online Web Services

Remark In order to view the online demos you will require a compatible internet browser
(for example Internet Explorer 5 or higher) with JavaScript enabled.

2.6.3 Using .NET Web Service Studio

You may wish to test the functionality of our XML Web services by using one of Mi-
crosoft’s .NET tools made for testing XML Web services, .NET Web Service Studio
2.0. A link to where you can directly download this tool is available on our online
web site at webcabcomponents.com/dotNET. Download and unzip the pack and run the
WebServiceStudio\build.bat file. In order to start up the tool double-click the generated
WebServiceStudio.exe .NET executable file.

Deciding on an XML Web service

Click here in order to open the .NET Homepage of our web site. At the bottom of the
page you will notice a list of Online .NET Web Services with their corresponding ASP.NET
Example page and their WSDL description page links. Click on the WSDL link next to
:fullnamewithoutdotnet:. Move your mouse pointer above the left hand SIDE MENU and
click on an XML Web service name.

23

http://www.webcabcomponents.com/dotNET
http://www.webcabcomponents.com/dotNET

Where do I Start? Chapter 2

A new browser window will open and present you with the default IIS 6.0 ASP.NET
XML Web service page. Inside the ‘Address’ bar of your browser you will be able to see
the fully qualified URL to the online WSDL for the corresponding XML Web service.

Connecting to an XML Web service

Copy from your browser’s Address bar the WSDL URL to the XML Web service you have
chosen to test and paste it into the WSDL EndPoint text field inside WebService Studio.
Click the Get button next to this text field and wait for the tool to establish a connection
to the XML Web service.

As soon as the connection has been established, you can start going through every available
webmethod our XML Web service has to offer by clicking on the items in the left hand side
of the tool’s window. After clicking a web method’s name, look inside the Input panel for
required parameters. You may recognize these parameters from the available API CHM
documentation we have included inside this package4.

Sending in Web Method Parameters

Inside the Body tree of the Input panel you may click on every parameter type and then
set its value inside the Value panel to its right. This is accomplished by editing the right
side of the Value column in the right hand side Value panel.

If you are dealing with parameters of an array type (say a Double[] array), you will first
set its Length in the Value panel and then go through every of its tree children inside the
Input panel and set their Value field back into the Value panel. The following two screen
shots explain this process.

WebService Studio: Setting the Length of a Double Array to 4

4Browse the API Reference by double-clicking the CHM file located inside the Documentation direc-
tory of this Package.

24

Where do I Start? Chapter 2

WebService Studio: Setting the Value of its First Element to 12

Invoking a Web Method

After having sent in the right parameter values5 click the Invoke button right below the
Value panel on the right hand side of the window.

The Output panel below the Input panel will present you with the results of invoking
the corresponding Web Method of our online XML Web service over the Internet.

5You should refer to the corresponding API HTML Help documentation even when running this test
tool. You could however send in some arbitrary values just to try out some of our simpler Web Methods.

25

Chapter 3

Statistics Documentation

This chapter accompanies the Statistics module of the WebCab Probability and Statistics
.NET Service. Statistics is the science of collecting, presenting and analyzing data. We
include formulae and methods which assist in the graphical representation of data within
frequency tables. Evaluation procedures of standard quantitative measures of centrality
(mean) and dispersion of (discrete) numerical sets are covered.

3.1 Data Presentation

Related to the graphical presentation of data by bars and charts are various calculations
which manipulate the raw data. These procedures are usually embedded within the graph-
ical client side charting component but here we separate them so that the developers may
run these calculations on the server.

3.1.1 Frequency Tables

A raw data set particularly when its range lies within a continuum makes it difficult to
detect any underlying patterns or rules. By grouping the values into a frequency table as
shown below the data becomes more accessible. We detail below how the data set may to
assigned to intervals of the real line for the purposes of analyzing the data set.

Given a discrete data set D = {d0, d1, . . . , dm}, and interval boundaries {a0, a1, . . . , am},
where a0 < a1 < . . . < aj; we introduce two devices known as the Open Left Boundary and
Open Right Boundary by which to assign the data set to a finite number of sub-intervals
of the real line.

Open Left Boundary Convention

We define the frequency values (with open left boundary) as:

αj =]{di : aj < di ≤ aj, i = 0, 1, . . . ,m}, for j = 0, 1, . . . ,m (3.1.1)

α−1 =]{di : a0 ≥ di, i = 0, 1, . . . ,m} (3.1.2)

26

Statistics Documentation Chapter 3

αm+1 =]{di : aj < di, i = 0, 1, . . . ,m} (3.1.3)

where] denotes the number of elements in the set. That is, α−1 is the number of elements
of the data set which are less than or equal to the smallest boundary value, and αm+1 is
the number of elements which are greater than the largest boundary value.

Open Right Boundary Convention

Similarly, we define the frequency values (with open right boundary) as:

βj =]{di : aj ≥ di > aj, i = 0, 1, . . . ,m}, for j = 0, 1, . . . ,m (3.1.4)

β−1 =]{di : a0 > di, i = 0, 1, . . . ,m} (3.1.5)

βm+1 =]{di : aj ≤ di, i = 0, 1, . . . ,m} (3.1.6)

where] denotes the number of elements in the set. That is, beta−1 is the number of el-
ements of the data set which are less than the smallest boundary value, and αm+1 is the
number of elements which are equal to or greater than the largest boundary value.

Remarks

� If the data set does not contain a value equal to one of the boundaries then the
frequencies for a given set of boundary points in accordance with the open left and
open right boundary convention will be the same. If one of the values is equal to a
boundary point then this is not the case.

� If the data sets has several variables then we can easily construct the corresponding
frequency table with several frequency variable.

� Each value within the data set will be counted exactly once.

Example

Consider the set of boundaries {1, 2, 3, 4, 5}, which divide the real line into six sub-intervals.
Now if we use the open left boundary convention then the real line will be divided into the
sub-intervals:

(− inf, 1], (1, 2], (2, 3], (3, 4], (4, 5], (5, inf)

Note that, each point on the real line can be assigned to one of these sub-intervals and
therefore when assigning a data point to one of these intervals there will only be one sub-
interval in which it belongs.

Now if we use the open right boundary convention then the real line will be divided into
the sub-intervals:

(− inf, 1), [1, 2), [2, 3), [3, 4), [4, 5), [5, inf)

Therefore, if we consider the data set {0.5, 1.4, 1.3, 2.0, 2.3, 4.5, 5.5}, if the assign this data
set in accordance with the above the conventions then we will have:

27

Statistics Documentation Chapter 3

Using Open Left Boundary (OLB) convention

� Within the interval (− inf, 1], we assign the data element 0.5; and hence the frequency
of this interval is 1.

� Within the interval (1, 2], we assign the data element 1.4, 1.3, 2.0; and hence the
frequency of this interval (wrt OLB convention) is 3.

� Within the interval (2, 3], we assign the data element 2.3, and hence the frequency
of this interval (wrt OLB convention) is 1.

� Within the interval (3, 4], we assign no data elements, and hence the frequency of
this interval (wrt OLB convention) is 0.

� Within the interval (4, 5], we assign the data element 4.5, and hence the frequency
of this interval (wrt OLB convention) is 1.

� Within the interval (5, inf), we assign the data element 5.5, and hence the frequency
of this interval (wrt OLB convention) is 1.

Using Open Right Boundary (ORB) convention

� Within the interval (− inf, 1], we assign the data element 0.5; and hence the frequency
of this interval is 1.

� Within the interval [1, 2), we assign the data element 1.4, 1.3; and hence the frequency
of this interval (wrt OLB convention) is 2.

� Within the interval [2, 3), we assign the data element 2.0, 2.3, and hence the frequency
of this interval (wrt OLB convention) is 2.

� Within the interval [3, 4), we assign no data elements, and hence the frequency of
this interval (wrt OLB convention) is 0.

� Within the interval [4, 5), we assign the data element 4.5, and hence the frequency
of this interval (wrt OLB convention) is 1.

� Within the interval [5, inf), we assign the data element 055, and hence the frequency
of this interval (wrt OLB convention) is 1.

Remark Note that the only difference for this data set when assigning it in accordance
with one of these conventions is that the element 2.0, in assigned to the sub-interval (1, 2], in
the case when the OLB convention is used and [2, 3) in the case when the ORB convention
is used.

28

Statistics Documentation Chapter 3

3.1.2 Relative Frequency Table

If we are comparing two or more data sets then the frequencies should be normalized to
reflect the possible different sizes of the data sets themselves. To normalize a data set we
much first divide the data set into a collection of classes into which the elements are as-
signed. Here we assign the data set in accordance with the open right boundary convention
where the class frequencies are just the number of elements within each of the sub-intervals
of the real line in accordance with the open right boundary convention (see example below).

To evaluate the relative frequency we apply the following formula to each class:

Relative frequency =
class frequency

total frequency
(3.1.7)

where the class frequency is the number of data points within a given sub-interval of the
real line, and the total frequency is the total number of elements within the data set
considered.

3.1.3 Cumulative Frequency Tables

Cumulative frequency tables are suitable for continuous or discrete data sets and show
the number of elements within a data set either below the highest value (or above the
lowest values) of the present frequency interval. Within the following discussion we use
the notation which has been introduced within the section on frequency tables and provide
precise definition of the Cumulative Frequency using the four possible combinations of
convention.

Cumulative Frequency Table from below with OLB

Using the above notation the Cumulative Frequency gi, from below for a frequency table
with open left boundary is given by:

gl
j =

∑
i∈N:i≤j

αi (3.1.8)

Cumulative Frequency Table from below with ORB

Similarly, the Cumulative Frequency hi, from below for a for a frequency table with open
right boundary is given by:

gr
j =

∑
i∈N:i≤j

βi (3.1.9)

Cumulative Frequency Table from above with OLB

The Cumulative Frequency hi, from above for a frequency table with open left boundary
is given by:

hl
i =

∑
i∈N:i≥j

αi (3.1.10)

29

Statistics Documentation Chapter 3

Cumulative Frequency Table from above with ORB

The Cumulative Frequency hi, from above for a frequency table with open left boundary
is given by:

hr
i =

∑
i∈N:i≥j

βi (3.1.11)

3.2 Basic Statistics

Within this section we details the functionality which has been implemented with the
class :WebCab:Statistics:Statistics:BasicStatistics:. Within this class we offer the following
measures of a numerical data set:

� Centrality: Including Arithmetic Mean, Median, Mode, Geometric Mean, Weighted
Average.

� Dispersion: Including Range, Inter-Quartile Range (IQR), Mean Deviation, Sample
Variance, Sample Standard Deviation, Coefficient of Variation.

� Relative Location: Including Percentile, z-Score, Chebyshev’s Theorem.

3.2.1 Measures of Centrality

Within this subsection we present the relationships which have been implemented which
allow the center of a data set (in some sense) to be measured.

Arithmetic Mean

The Arithmetic Mean of n observations x1, x2, . . . , xn, is:

x̄ =
1

n

n∑
i=1

xi (3.2.12)

Median

The Median is the middle value when the observations have been arranged in order of
size. That is, if there are n observations then the median is the [(n + 1)/2]th observation.

Mode

The Mode is the most frequently occurring observation. For example, the data set
{1, 3, 7, 3, 1, 5, 1}, has a median of 1.

Geometric Mean

The Geometric Mean is the nth root of the product of all the n observations, that is:

Geometric Mean = (x1x2x3 . . . xn)
1
n (3.2.13)

30

Statistics Documentation Chapter 3

Weighted Average

If each sample observation xi is associated with a weight wi, where:

n∑
i=1

wi = 1

The weighted mean of (x1, . . . , xn) is given by:

x̄ =
n∑

i=1

wixi (3.2.14)

3.2.2 Measures of Dispersion

Within this subsection we present the relationships which have been implemented which
allow the level of dispersion of a data set (in some sense) to be measured.

Range

The Range is simply the largest observation (al) minus the smallest observation (as),
namely:

Range = al − as

Inter-Quartile Range

The inter-quartile range (IQR) is a measure of dispersion, which is not affected by
extreme values. We define:

� The lower quartile is the value such that 1
4

of the observations lie below it

� The upper quartile is the value such that 1
4

of the observations lie above it

Then:
IQR = upper quartile− lower quartile (3.2.15)

Mean Deviation (from the mean)

The mean deviation is given by:

Mean Deviation =
1

n

n∑
i=1

|xi − x̄| (3.2.16)

where x̄ is the arithmetic average of x1, . . . , xn, and |x| denotes the absolute value of x.

31

Statistics Documentation Chapter 3

Sample Variance

The sample variance, s2 is given by the following expressions:

s2 =
1

n− 1

n∑
i=1

(xi − x̄)2 (3.2.17)

where x̄ is the arithmetic average of {x1, . . . , xn}, the data set being considered.

Sample Standard Deviation

The units of the sample variance are the squares of the observation units. This is rather
inconvenient and so we usually quote the square root of the sample variance, known as the
sample standard deviation, which has the same units as the observations from which
it was derived.

s =
√

Sample variance =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2, (3.2.18)

where x̄ is the arithmetic average of {x1, . . . , xn}, the data set being considered.

Coefficient of variation

The Coefficient of Variation measures to the relative values of the Standard Deviation
with regard to the mean of the data set considered. Note that the mean is a general proxy
for the approximate magnitude of the elements of the data set being considered. The
Coefficient of Variance is given by the following expression:

Coefficient of variation =
standard deviation

mean
∗ 100 (3.2.19)

Remark Clearly the Coefficient of Variation is undefined if x̄ = 0, and generally will be
of little value if the mean is close to zero.

3.2.3 Measures of Relative Location

Within this subsection we present the relationships which have been implemented which
allow the relative location of an element of collection elements within a data set (in some
sense) to be measured.

Percentile

The i-th percentile of a data set is the value such that at least i percent of the data set
items are less than or equal to this value, or equivalently if at least (100− interest) percent
of the items are greater than or equal to this value.

Remarks

32

Statistics Documentation Chapter 3

� The 50-th percentile is the measure of centrality known as the median of a data set
(defined above).

� The 25-th, 50-th, 75-th percentiles are often referred to as the 1-st, 2-nd (median)
and 3-rd quartile respectively. The term quartile refers to the fact that these three
values will roughly divide the data set considered into four equal parts.

z-Score

Evaluates the z-score (often referred to as the standardized value) of an element xi of the
data set considered. The z-score denotes the number of standard deviations of a given
element of the data set is from the mean of the data set. Formally, the z-Score of a element
xi is given by:

xi − x̄

Standard Deviation

where x̄ is the mean of the data set considered and Standard Deviation, is the standard
deviation of the data set defined in the preceding subsection.

Chebyshev’s Theorem

Using a direct application of Chebyshev’s Theorem we evaluate the percentage of items
that must be within a specified number of standard deviations from the mean. Chebyshev’s
Theorem states the following:

Chebyshev’s Theorem: At least (1− 1
z2) of the items in any data set must

lie within z standard deviations of the mean of the same data set when z is any
real number greater than 1.

Example: If we take the number of standard deviation to be 2, then by applying Cheby-
shev’s Theorem we are able to evaluate the proportion of the data set which lies within
the interval [m− (2 ∗ SD), m + (2 ∗ SD)], where m is the arithmetic mean of the data set
considered and SD is the standard deviation of the data set considered. Note that if A is
the proportion returned then the corresponding percentage of items within the interval is
(A ∗ 100).

3.3 Grouped Data

Within this section we details the functionality which has been implemented with the class
:WebCab:Statistics:Statistics:BasicStatistics:. Within this class we offer measures of:

� Sample Mean of Grouped Data

� Sample Variance of Grouped Data

� Sample Standard Deviation of Grouped Data

33

Statistics Documentation Chapter 3

3.3.1 Example of a Grouped Data Set

In order to assist in the analysis of a given data set it is often convenient (and in fact
often necessary) to collect the data into categories. For example, consider a data set which
consists of the heights of a set of 100 people. Now in order to derive qualitative properties
concerning this data set it is natural to group the data set into height intervals (i.e. such
intervals could be 0m - 1.20m, 1.21m - 1.50m, 1.51m - 2.00m, 2.01m - 3.00m. For each
interval the number of members (i.e. frequency) of the original data set which fall within
the interval would be recorded. Moreover the midpoints of the intervals are: 0.60, 1.35,
1.75, 2.50; respectively.

Say for a given collection of people in accordance with the above grouping (i.e. classes) we
have:

� Height 0m - 1.20m, Number of people (i.e. frequency) within this group (or class) is
equal to 5

� Height 1.21m - 1.50m, Number of people (i.e. frequency) within this group (or class)
is equal to 25

� Height 1.51m - 2.00m, Number of people (i.e. frequency) within this group (or class)
is equal to 30

� Height 2.01m - 3.00m, Number of people (i.e. frequency) within this group (or class)
is equal to 3

3.3.2 Quantitative Measures of Grouped Data

Within this subsection we describe means by which the Sample Mean, Sample Variance
and Sample Standard Deviation of a Grouped Data Set can be evaluated.

Sample Mean of Grouped Data

In a grouped frequency table with k class intervals, where xi refers to the mid-point of the
ith interval and fi to the frequency in that interval, the Sample Mean for this Grouped
Data set is:

x̄ =

∑k
i=1 xifi∑k
i=1 fi

(3.3.20)

Sample Variance of Grouped Data

Using the notation as above the Sample Variance is given by:

Sample Variance =

∑
i fi(xi − x̄)2

n− 1
(3.3.21)

where x̄ is the Sample Mean of the Grouped Data and n is the Sample Size used.

34

Statistics Documentation Chapter 3

Sample Standard Deviation of Grouped Data

Using the notion as above the Sample Standard Deviation is given by:

Sample Standard Deviation =
√

Sample Variance (3.3.22)

35

Chapter 4

Discrete Probability Documentation

Within this chapter and the associated module we consider the (probabilistic) study of exper-
iments with a finite number of events, where each event can have one of a finite number of
possible outcomes. This study is generally referred to as Discrete Probability.

4.1 Random Variables

As mentioned above the theory of Discrete Probability, is the study of experiments with
a finite number of events where each of these events can have one of a finite number of
possible outcomes. Here we will describe one approach to the study of such experiments
using random variables. A (discrete) Random Variable is a numerical description of the
outcomes of such an experiment. That is, a random variable associated to a (finite)
experiment, is a mapping of a finite set of events (with numerical identifiers) onto their
associated outcomes which also have a numerical identifier.

Formally speaking a random variable X : E → S, of a discrete set of events E, is a
function which maps the events E, onto a discrete index set S. In the following discussion
we will often use this formal notation (due to efficiency) however sight of the origin and
motivation of random variables should never be far from the users mind.

Note: In the following discussion where formal notation is used we will always take
S = 0, 1, . . . , N or 1, 2, . . . , N , for some positive integer N .

4.1.1 Examples of Random Variables

Below we provide two examples of experiments which can be studied by identifying variables
with the experiment with numerical values. Within the commuter example given below
the outcomes of the experiment is the magnitude of the time taken in order to perform a
daily commute, whereas in the second nursery example the random variable describes the
number of children within a given age group. The way in which the random variable can
be used to describe the experiment will depend on the nature of the experiment. Moreover,
if there is a degree of choice in the association of the random variable with the experiment

36

Discrete Probability Documentation Chapter 4

considered then the choices should be made in view of the particular properties of the
experiments you wish to study.

Commuter Example

An example of a random variable could correspond to the days of a given working week
(i.e. 1, 2,...,5) and the number of minutes a daily commute to work took. For example,

� Monday’s commute took 28 minutes

� Tuesday’s commute took 30 minutes

� Wednesday’s commute took 26 minutes

� Thursday’s commute took 32 minutes

� Friday’s commute took 30 minutes

The random variable denoted by f , for this experiment would correspond to:

� f(1) = 28

� f(2) = 30

� f(3) = 26

� f(4) = 32

� f(5) = 30

Recall that a random variable is a numerical description of an experiment, and therefore
in the above example we have made the following associations:

� Monday ←→ 1, i.e. the first day of the experiment.

� Tuesday ←→ 2, i.e. the second day of the experiment.

� Wednesday ←→ 3, i.e. the third day of the experiment.

� Thursday ←→ 4, i.e. the fourth day of the experiment.

� Friday ←→ 5, i.e. the fifth day of the experiment.

The fact that random variables are numerical descriptions of experiments allows us to ap-
ply numerical techniques in order to study the associated experiments. Clearly different
experiments will be represented by differing random variables, however it is also the case
that the same experiment can justifiably be represented by two different random variables.
However, the way in which the random variable describes the experiment will effect the in-
terpretation and even applicability of the numerical techniques (for example, the evaluation
of the mean, variance and rho statistic).

37

Discrete Probability Documentation Chapter 4

Nursery Example

Considering the experiment of counting the number of children of the ages 1, 2, 3, 4 or 5,
within a nursery. Say the random variable f , for this experiment is:

� f(1) = 28, i.e. the number of 1 year old children is 28.

� f(2) = 30, i.e. the number of 2 year old children is 30.

� f(3) = 26, i.e. the number of 3 year old children is 26.

� f(4) = 32, i.e. the number of 4 year old children is 32.

� f(5) = 30, i.e. the number of 5 year old children is 30.

Here we have identified the number of children of a given age as the outcome of the
experiment. Therefore, the random variable used here is a mapping which maps an integer
corresponding to a age group of children within the nursery to the number of children
within the nursery of that age.

4.1.2 Associated Probability Distribution

Each random variable has an associated probability distribution pp, function where the
magnitude or number of the outcomes of the experiment is replaced with the percentage
size a given outcome has in the set of all possible outcomes. As mentioned above the
interpretation of the probability distribution will depend on the nature of the random
variable. Within our two examples given the associated probability distribution would be
described as follows:

� Commuter Example: The associated probability distribution maps the journey time
on a particular day to the percentage of the total commuting time used during the
period considered. That is, if a random moment is selected during the commuting
period then the probability distribution returns the probability of that moment being
within a given day

� Nursery Example: The associated probability distribution maps an age group to the
probability of a randomly selected child from t he nursery is a member of that age
group.

Formally, the associated probability distribution p : E[0.1], of a random variable X : E →
S, of a discrete set of events E, onto a discrete index set S, is given by:

p(a) =
R(a)∑

x∈S R(x)
,

where a ∈ E.

38

Discrete Probability Documentation Chapter 4

Evaluating the Associated Probability Distribution for the nursery example

The associated (discrete) probability distribution p, for these results which gives the prob-
ability of a child randomly selected from the nursery taking a given age is:

� p(1) = 28
(28+30+26+32+30)

, i.e. probability of a child being 1 years old.

� p(2) = 30
(28+30+26+32+30)

, i.e. probability of a child being 2 years old.

� p(3) = 26
(28+30+26+32+30)

, i.e. probability of a child being 3 years old.

� p(4) = 32
(28+30+26+32+30)

, i.e. probability of a child being 4 years old.

� p(5) = 30
(28+30+26+32+30)

, i.e. probability of a child being 5 years old.

4.1.3 Cumulative Distribution Function

Cumulative distribution function (c.d.f), denoted F : E → [0, 1], is just the sum of the
probability distribution for all value less than or equal to a given evaluation point.

Formally, the cumulative distribution function is given by:

F (x) =
∑

xi≤x:xi∈E

p(xi), (4.1.1)

where p is the probability distribution associated to the underlying random variable as
defined in the previous subsection.

Evaluating the Cumulative Distribution Function of the Nursery Example

Here we illustrate the evaluation of the associated cumulative probability distribution g :
1, 2, 3, 4, 50, 1], of the nursery example defined above. The cumulative distribution function,
in this case takes the values:

� g(1) = p(1), the probability of a child being a 1 year old.

� g(2) = p(1) + p(2), the probability of a child being 2 years old or younger.

� g(3) = p(1) + p(2) + p(3), the probability of a child being 3 years old or younger.

� g(4) = p(1)+p(2)+p(3)+p(4), the probability of a child being 4 years old or younger.

� g(5) = p(1) + p(2) + p(3) + p(4) + p(5) = 1, the probability of a child being 5 years
old or younger. Note that since all children in the sample are 5 years old or younger
the sum must be unity.

The value which is returned by this method is precisely the value of the corresponding
function g. Moreover, we allow the evaluation point to be set equal to any double and
therefore for example if we set the evaluation point to be equal to 2.5, then the values
corresponding to g(2), rather than g(2.5) will be returned.

39

Discrete Probability Documentation Chapter 4

4.1.4 Expected Values of a Random Variable

Here we consider the Expected Value of a Random Variable which is the weighted arith-
metic average of the possible outcomes. Returning to the nursery example used above the
mean of the random variables which describes the nursery experiment corresponds to the
average age of a child within the nursery.

Formally, if we assume that the random variable X must have one of the values x1, x2, . . . , xk,
where the associated probability distribution takes the values p(x1), p(x2), . . . , p(xk) where:

k∑
i=1

p(xi) = 1

Then the expected value of the random variable E, is given by:

E[X] =
k∑

i=1

xip(xi) (4.1.2)

In general, if g(X) is a function of the random variable X,

E[g(X)] =
k∑

i=1

g(xi)p(xi) (4.1.3)

Auxiliary Remarks

If g(X) and h(X) be functions of a random variable X, let Y be another random variable
and let c and k be constants, then:

� E[cg(X)] = cE[g(X)]

� E[g(X) + c] = E[g(X)] + c

� E[g(X) + h(X)] = E[g(X)] + E[h(X)]

� E[cX + kY] = cE[X] + kE[Y]

If X and Y are independent random variables then:

� E[XY] = E[X]E[Y]

4.1.5 Variance of a Random Variable

Here we consider the variance of a Random Variable which is roughly speaking the weighed
sum of the squares of the differences from the mean of each of the values taken. Intuitively
speaking, the variance is a measure of the amount by which the values which the random
variable takes deviate from its mean. Returning to the nursery example (discussed in the
above sections) the variance of the associated random variable describes to what degree

40

Discrete Probability Documentation Chapter 4

the we would expect a randomly selected child’s age to differ from the mean of the ages of
the children within the nursery.

Formally, the variance of a random variable σ2, is given by:

σ2 =
∑
x∈E

(x− µ)2p(x) (4.1.4)

where µ is the mean of the random variable, E is the range of the underlying random
variable and p(x) is the value of the associated probability distribution.

4.2 Discrete Probability

Within this section we introduce the foundations of discrete probability which has been
implemented within the Probability class of the Discrete Probability module. This in-
cludes discrete probability measures, the addition law, union and intersection laws, and
conditional/complementary probability.

4.2.1 Calculating the Discrete Probability

The definition and evaluation of the probability of a set can be presented on a apriori or
relative frequency basis.

Apriori Definition

If an experiment has n equally likely outcomes, the probability of an event, E, denoted by
P (E), is given by:

P (E) =
Number of different ways in which E can occur

n
(4.2.5)

Relative Frequency Definition

The probability of an event is the relative frequency of its occurrence in the long run:

P (E) =
Number of times E occurred

Number of trials
(4.2.6)

The set of all possible outcomes of an experiment is called the sample space, denoted by ε.

Notation We denote the union of two sets A and B by A ∪ B, and the intersection
by A ∩B, and the empty set by ∅.

4.3 Basic Laws of Probability

We start by introducing the following notation. The set of all possible outcomes of an
experiment is called the sample space, denoted by ε. We denote the union of two sets A
and B by A ∪ B, and the intersection by A ∩ B, and the empty set by ∅.

41

Discrete Probability Documentation Chapter 4

4.3.1 The Addition Law

Using the above notation the addition law is given by:

P (A or B) = P (A) + P (B)− P (A ∩ B) (4.3.7)

In particular, if A and B are independent i.e. A ∩ B = ∅, then:

P (A or B) = P (A) + P (B)

4.3.2 Conditional Probability

The conditional probability of A given that event B occurs is denoted by P (A|B), where:

P (A|B) =
P (A ∩ B)

P (B)
(4.3.8)

Therefore, if A ∩ B = ∅, then:
P (A|B) = P (A)

and the multiplication rule reduces to:

P (A ∩ B) = P (A)P (B) (4.3.9)

Remark The above formulae can be used to test for the independence of two sets of
events.

4.3.3 Complementary Events Probability

The complementary events probability of A, denoted P (A′) is given by:

P (A′) = 1− P (A) (4.3.10)

42

Chapter 5

Correlation and Regression
Documentation

Within this chapter we describe in detail the numerical statistical procedures which will
be applied to the problem of measuring the correlation and linear regression between
two variables. Where appropriate we will motivate and justify the applicability of the
procedures introduced.

5.1 Overview

To give the reader a global perspective of our chosen collection of statistical procedure and
how these form a justifiable basis from which one can make conclusions. We consider the
notion of correlation and well as remark on related issues which may effect the validity of
any results found.

The notion of ‘correlation’ is a measure of the degree to which two variables (possibly
more) are moving in step. Here we will chiefly be interested in linear correlation, that is
forming a methodology from which we can conclude with a ‘Reasonable’ level of confidence
that two variables exhibit a linear relation.

Remark If two variables are correlated it does not necessarily imply that there exists a
functional relationship between them. For example they might move in step with a third
variable.

5.2 Significant Figures

This component will produce results which are accurate to 16 significant figures given
sufficiently good initial data. Below to detail two influences:

� Computational Accuracy - When the implementation of the computational procedures
where performed all numerical values where represented as doubles. Hence no signif-

43

Correlation and Regression Documentation Chapter 5

icant loss of accuracy will occur during the computational procedure and given good
initial data the component is able to return results to at least 13 significant figures.

� Input Data - If the input data is accurate to n significant figures then the component
will return correlation results which can be claimed to n− 2 significant figures.

5.3 Linear Correlation

We will now introduce models from which we can detect in a given sense whether a linear
relationship exists between two variables.

5.3.1 Pearson’s Product Moment Correlation Coefficient

For a given numerical data set (xi, yi), i = 1, . . . , N , a natural way (illustrated below) in
which to measure correlation is Pearson’s Product Moment Correlation Coefficient, which
we will denote by r. This measure is widely used and is often referred to as the sample
correlation component.

Motivation

When first thinking about how one might measure the ‘Correlation’ between two vari-
ables it may seem natural to consider the covariance, that is:

N∑
i=1

(xi − x̄)(yi − ȳ),

where x̄ and ȳ are the arithmetic averages of the numerical data sets under consideration.

The problem with using the covariance as a measure of correlation is that is depends
upon the way in which the values within the data set are measured. It may appear that
a large positive value for the covariance implies a strong positive linear relationship. But
the user should be careful because the covariance will depend upon the units which are
being used for the measurement of the two variables. For example, say we are interested
in investigating the relationship between the height x and the weight y of a set of people.
Clearly the relationship should be the same whether we measure height in feet or inches.
When height is measured in inches, however, we get a much higher numerical value for
(xi − x̄) than when it is measured in feet. Thus, with height measured in inches we would
obtain a larger value for the covariance. Hence their result is not invariant of the choice
of units. By factoring out this problem of units we are lead directly to what is known as
Pearson’s coefficient or the linear correlation coefficient.

The Formulae

44

Correlation and Regression Documentation Chapter 5

The linear correlation coefficient r, is given by the formula:

r =

∑N
i=1(xi − x̄)(yi − ȳ)

NsXsY

(5.3.1)

where sX and sY are the sample deviation for the two variables. If we expand these terms,
we get the following expression:

r =
N
∑N

i=1 xiyi −
∑N

i=1 xi

∑N
i=1 yi√

N
∑N

i=1 x2
i −

(∑N
i=1 xi

)2
√

N
∑N

i=1 y2
i −

(∑N
i=1 yi

)2
(5.3.2)

Remarks

� The coefficient r lies in the interval [−1, 1]

� The variables x and y are uncorrelated if the value of r is ear’ to zero

� The following terminology is often used:

– complete positive correlation if r = 1

– complete negative correlation if r = −1

5.3.2 Significance Test for Pearson’s Coefficient, r

The data used to calculate the correlation coefficient are samples from a population of
possible observations, so r is subject to sample fluctuations. The entire populations corre-
lation coefficient, ρ is generally unknown.

When a correlation is known to be significant Pearson’s coefficient r, is one conventional
way of summarizing its strength. But since in most instances a sample of the entire popu-
lation is used to determine the correlation of the entire population. We introduce methods
which allow the user to determine to what degree results for the sample hold for the entire
population.

Remark Questions and methods related to significance testing of point wise statistics
falls within the area of statistics known as statistical inference. This topic is covered is
much greater depth within the component WebCab Confidence Intervals and Hypothesis
testing. For more details, motivation and examples concerning hypothesis testing please
feel free to download the demo version of this product.

We will allow hypothesis testing methods against the null hypothesis that our variables x
and y are uncorrelated. Thus, we will test the null hypothesis:

H0 : r = 0

45

Correlation and Regression Documentation Chapter 5

against the alternative hypothesis:
HA : r 6= 0

where r is Pearson’s correlation coefficient.

t Test Statistic

If the number of data points N is not large, then the test statistic is:

t = r

√
N − 2

1− r2
(5.3.3)

Remark Under the null hypothesis of there being no correlation present the t test statistic
follows the Student’s t distribution, with N − 2 degrees of freedom.

Fisher’s z-transformation

If N is only moderately large (i.e. ≥ 10) we compare whether the difference of two signifi-
cantly nonzero r from different experiments is itself significant. To do this we use Fisher’s
z-transformation to associate each measured r with a corresponding z,

z =
1

2
ln

(
1 + r

1− r

)
(5.3.4)

Remark If the joint probability distribution of the variables x and y is ‘too different’
from a binomial distribution then it is not possible to give meaningful interpretations of
the Pearson’s coefficient statistic r.

5.4 Non-parametric or Rank Correlation

The uncertainty in interpreting the significance of the linear correlation coefficient, r leads
to the concept of non-parametric or rank correlation. We replace the value of each xi by
the value of its rank among the other xi in the sample. We use exactly the same procedure
for the yi’s, replacing each value by its rank among the other yi’s in the sample. If some
of the xi’s have identical values, it is conventional to assign to all these ties the mean of
the ranks that they would have had if their values had been slightly different. This mid
rank will sometimes be an integer, sometimes a half-integer. Non-parametric correlation
is more robust than linear correlation, more resistant to unplanned defects in the data, in
the same sort of sense that the median is more robust than the mean.

5.4.1 Spearman’s Rank Correlation Test

To measure the association between the variables x and y we consider the Spearman’s
Rank Correlation coefficient, rs, for when the data are defined by their position. Thus,
the data can be placed in order but is not given an absolute size. Let ri be the rank of xi

46

Correlation and Regression Documentation Chapter 5

among the other x’s, si be the rank of yi among the other y’s. The rank-order correlation
coefficient is defined to be the linear correlation coefficient of the ranks, namely,

rs =

∑N
i=1(ri − r̄)(si − s)√∑N

i=1(ri − r)2

√∑N
i=1(si − s)2

(5.4.5)

The significance of a nonzero of rs is tested by computing:

t = rs

√
N − 2

1− r2
s

(5.4.6)

which is distributed approximately as Student’s distribution with N - 2 degrees of freedom.

We denote by D the sum squared difference of ranks :

D =
N∑

i=1

(ri − si)
2 (5.4.7)

When there are no ties (i.e. the data set has no two identical entries) in the data, then the
exact relation between D and rs is:

rs = 1− 6D

N3 −N
(5.4.8)

When there are ties the exact relation between D and rs is slightly more complicated.

Let fk be the number of ties in the kth group of ties among the ri ’s, and let gm be
the number of ties in the mth group of ties among the si’s. Then we have the formula:

rs =
1− 6

N3−N

[
D + 1

12

∑
k(f

3
k − fk) + 1

12

∑
m(g3

m − gm)
]

[
1−

∑
k(f3

k−fk)

N3−N

] 1
2
[
1−

∑
m(g3

m−gm)

N3−N

] 1
2

(5.4.9)

Remark It is useful to calculate the significance level using (5.4.8) and (5.4.9), when
there are ties in order to get some feel for the level of accuracy which this method will
provide us with. Note that a small perturbation of the underlying data set could result
in all the ties being lost. Hence, by calculating both figures and comparing them we can
see to what degree the final outcome has been effected by the existence of ‘equal values’
within the data set. The smaller the difference the more rigidity the data set exhibits with
regard to ordering in the sense of Spearman’s test.

5.4.2 Kendall’s Rank Correlation Coefficient

A somewhat different approach to the problem of agreement between two rankings is given
by the τ coefficient (small Greek tau) due to M.G. Kendall. The Kendall coefficient relies

47

Correlation and Regression Documentation Chapter 5

upon the following principle of inversion:

or a data set which is ranked according to two ordering mechanism. An inversion (in
ordering) exists between any pair of individuals b and c when b > c in one ranking and
c > b in the other.’

Instead of treating the ranks themselves as though they were scores and finding a cor-
relation coefficient as in the case of Spearman’s coefficient, in the computation of τ we
depend only on the number of inversions in order for the pairs of individuals in the two
rankings.

We have the following definition of the τ statistic:

τ = 1− 2(Number Of Inversions)

Number Of Pairs Of Objects
(5.4.10)

Remark When two rankings are identical there are no inversions in order needed and so
in this case τ = 1. On the other hand when one ranking is exactly the reverse of the other
every pair of points an inversion exists between each pair of individuals and so τ = −1.
Which agrees with what we would expect.

Various methods exist for the computation of τ , which will be more or less appropri-
ate according to the nature of the data set under consideration. The method which we
applied to calculate τ , was based around the following procedure:

� We list the ordered data according to the first and second ranking

� Then for each member of the data set, we draw a straight lines connecting the same
member in each of the rankings

� After drawing lines between each member we count the total number of times in
which a pairs of lines cross

� The number of line crossings is the number of ‘inversions in order’

In order to judge the significance of the results we need a null hypothesis. The null
hypothesis in this case is taken to be the assumption that there is no association between
the variables x and y. In this case Kendall’s coefficient τ , is approximately normally
distributed, with an expectation of zero and a variance of:

Var(τ) =
4N + 10

9N(N − 1)
, (5.4.11)

where N is the total number of members of the set under consideration.

By calculating Kendall’s Coefficient for many different pairs of rankings and plotting the
results we are able to ascertain the degree we can have confidence in the association between
the two variables.

48

Correlation and Regression Documentation Chapter 5

5.5 Linear Regression

If a scatter plot and the value of a correlation coefficient indicate a linear association be-
tween two variables we use a regression line in order to predict the value of one variable
from the value of the other.

In this case we have two kinds of variables:

� independent variables which we use to make predictions about the other variables

� dependent variables which we can be predicted to a certain degree of confidence from
the other variables

5.5.1 The Least Squares Regression Line

The most common method for the construction of a regression line is the method of least
squares which we will apply to the problem at hand. For a numerical data set of ordered
pairs (x1, y1), . . . , (xn, yn), n ∈ N. The least-squares regression line y on x is placed on a
scatter diagram so that the sum of the squared vertical distances di, from the points to
the line is minimized. Thus, the line is positioned so that

∑n
i=1 d2

i , has the smallest value
possible.

By a straight forward calculation we conclude that the regression line is given by ŷ = ax+b,
where a, b ∈ R, where:

b =
n
∑n

i=1 xiyi −
∑n

i=1 xi

∑n
i=1 yi

n
∑n

i=1 xi
2 − (

∑n
i=1 xi)2

(5.5.12)

and

a =

∑n
i=1 yi − b

∑n
i=1 xi

n
(5.5.13)

5.5.2 The Least Square Regression Line for y on x

Clearly by transposing the axis the formulae for this regression line for y on x are iden-
tical to the formulae for x on y, except that the variables are interchanged. In this case
the methodology is also the same except that the distances between the points and the
regression can measured ‘vertically’ i.e. along the -axis’ rather than horizontally along the
axis’. Summarizing we get the regression line x̂ = a + by, where:

b =
n
∑n

i=1 yixi −
∑n

i=1 yi

∑n
i=1 xi

n
∑n

i=1 yi
2 − (

∑n
i=1 yi)2

(5.5.14)

a =

∑n
i=1 xi − b

∑n
i=1 yi

n
(5.5.15)

Remark This regression line is not used within the subsequent analysis. But by calcu-
lating both of the regression lines of x on y and y on x, and ‘measuring’ the difference
between these lines we are able to show the rigidity of the method over ordering of the two
variables.

49

Correlation and Regression Documentation Chapter 5

5.5.3 Average of the Regression Error

We also record the average regression error. This is calculated by taking each data point
and evaluated the arithmetic mean of the modulus of the minimal distance in the horizontal
or vertical direction respectively between the data points and the regression line.

5.6 Prediction Intervals for the Conditional Mean

Regression lines are constructed from sample data and therefore subject to sample varia-
tion. Thus, two samples may result in two different regression lines:

ŷ = a1 + b1x

ŷ = a2 + b2x

Linear regression theory assumes that there is a true regression line:

µy|x = α + βx

We use a predicted value ŷ to construct a confidence interval for the value of µy|x, that is
we find to what degree of accuracy and for what confidence level our regression line can
predict elements within the data set. We refer to this value as the prediction interval for
the conditional mean, µy|x.

Remark In financial applications where for example we are considering the correlation
between two assets closing days prices. It may seem in this instance that there is little
sample variation since the closing price is set by the exchange. But say we had chosen
to plot the regression line with the data set which consisted of the closing price on every
other day (or we could use any other subset of the original data). The natural question
is, would the regression line constructed from this data subset be significantly different?
Prediction intervals address these issues and quantify to what degree the data set which
we are considering has ‘rigidity’ in terms of the construction of regression lines. This in-
formation indicates to level of confidence which we can have with using the regression line
to predict additional future values.

Within our construction we will use the Student’s Distribution (also known as the t-
distribution). The basic idea behind the t-distribution is that if the underlying data set
only contains a small number of members, even if the underlying dynamics may to normal
the normal distribution is not the most appropriate distribution to use because the tails
tend to be too flat. The Student’s distribution is a family of probability distributions
which are parameterized by the number of degrees of freedom (related the size of he data
set). The student distribution is used to develop interval estimates of a population mean
whenever the population standard deviation is unknown and the population has a normal
or near-normal probability distribution.

The values of ŷ follow the Student’s distribution with (n− 2) degrees of freedom where n

50

Correlation and Regression Documentation Chapter 5

is the number of elements within the data set. The interval at a particular point on the
regression line (x0, ŷ0) is constructed using:

ŷ0 ± tsy|x

√
1

n
+

(x0 − 1
n

∑n
i=1 xi)2∑n

i=1 xi
2 − (

∑n
i=1 xi)2

(5.6.16)

where sy|x is the standard error of the estimate ŷ, given by:

sy|x =

√∑n
i=1(yi − ŷi)2

n− 2
(5.6.17)

=

√∑n
i=1 yi

2 − a
∑n

i=1 yi − b
∑n

i=1 xiyi

n− 2

5.6.1 The Coefficient of Determination

The coefficient of determination is a measure of the goodness of fit of the estimated regres-
sion line. It can be interpreted as the proportion of the variation in the dependent variable
that is explained by the estimated regression line.

This coefficient is closely related to a number of other concepts which we will discuss.
Say for the ith observation within our sample which we used to generate the regression line
the observed value of the dependent variable yi, and the estimated value of the dependent
variable ŷi, which is implied from the regression line is called the ith residual. The ith
residual represents the error in using ŷi to estimate yi. Thus, for the ith observation, the
residual is yi − ŷi. The sum of squares of these residuals or errors is the quantity that is
minimized by the least squares method. This quantity, also known as the sum of squares
due to error , is denoted by SSE. That is:

SSE =
∑

i

(yi − ŷi)
2 (5.6.18)

The value of SSE is a measure of the error in using the estimated regression equation to
estimate the values of the dependent variables in the sample.

Suppose that we wish to estimate values from a sample but do not know the size of
the entire set. In this case we would use the sample mean ȳ, of the i sample members to
estimate further values. The difference yi − ȳ, provides a measure of the error involved in
using ȳ to estimate further values. The corresponding sum of the squares, called the total
sum of squares, is denoted by SST and given by:

SST =
∑

i

(yi − ȳ)2 (5.6.19)

51

Correlation and Regression Documentation Chapter 5

To complete the circle, we can measure to amount to which the ŷ values on the estimated
regression line deviate from ȳ. This sum of squares is called the sum of squares due to
regression, is denoted by SSR and given by:

SSR =
∑

i

(ŷi − ȳ)2 (5.6.20)

Naturally there is a nice relation between these three sums of squares which is one of the
most important results within statistics. The relationship between SST, SSR and SSE is
given by:

SST = SSR + SSE (5.6.21)

where,

� SST = total sum of squares

� SSR = sum of squares due to regression

� SSE = sum of squares due to error

We will now introduce the coefficient of determination which uses the above measures in
order to construct a measure of the goodness of fit for the estimate regression line. Using
our above relation, the coefficient of determination denoted r2, is given by:

r2 =
SSR

SST

(
=

SST

SST
− SSE

SST

)
(5.6.22)

The estimate can be thought of as a ‘normalized squares error’, the normalizing is done
by dividing through by SST. The coefficient r2 satisfies 0 ≤ r2 ≤ 1 and further if the
regression line is a perfect fit hence SSE = 0, then r2 = 1, which intuitively is exactly what
one would expect.

5.6.2 Residuals

We will also record the average of the residuals which does not form a useful statistical
test since it is always zero by definition. What this does offer us is a means the test the
computational reliability of the implementation which we use.

The residuals are the amount of variation of the Y values around the regression line. The
populations errors, εi are the differences between the observed values and the regression
line:

εi = yi − (α + βxi) (5.6.23)

Remark In order to check the integrity of the numerical calculations we calculate all
the residuals for each value and then take the average of all of these values. Theoretically
this is zero and hence if we get a non-zero entry from the numerical calculations which we
perform we know that the batch should be rerun. for the sake of completeness we give the
formula below:

n∑
i=1

εi =
n∑

i=1

(yi − (α + βxi)) = 0 (5.6.24)

52

Chapter 6

Standard Probability Distributions
Documentation

This chapter accompanies the Standard Probability Distributions module of the WebCab
Probability and Statistics .NET Service. Within this chapter (and software module) we
cover discrete and continuous probability distributions. In particular, for each probability
distribution we will detail the variables which the distribution depends on, the domain of
definition of the distribution, the probability density and associated cumulative density
functions which the distribution is constructed from, the mean and variance of the distri-
bution, and its skewness, kurtosis and mode.

For each of the probability distributions we provide a description of its parameters, the
density function, evaluation of the probability, the mean and variance, the Skewness and
Kurtosis, and the mode of the distribution. Where appropriate we will include further
notes regarding issues such as the mean by which the inverse of the distribution in found.

6.1 Discrete Probability Distributions

6.1.1 Binomial Distribution

Parameters

This distribution considers n independent trials of independent events which have two
possible outcomes (i.e. ‘success’ or ‘failure’). The probability of whether a ‘success’ or
‘failure’, occurs is the same from one trial to the next. Therefore, we can describe what is
referred to as a Binomial experiment with the following two parameters:

1. n: a positive integer which represents the number of independent trials considered
within the Binomial experiment.

2. p: a real number within the closed interval [0, 1], which represents the probability of
a success occurring for each of the trials. Since, there are only two possible outcomes
this implies that the probability of a ‘failure’ is (p− 1).

53

Standard Probability Distributions Documentation Chapter 6

Probability Density Function

If p is the probability of a ‘success’ in a single trial then the probability p(x) of obtaining
x ‘successes’ from n trials is given by:

p(x) = Cn
x px(1− p)n−x (6.1.1)

where Cn
x = n!

x!(n−x)!
.

Mean and Variance

The mean µ, and variance σ, of this distribution is given by:

µ = np (6.1.2)

σ2 = np(1− p) (6.1.3)

Skewness and Kurtosis

The Skewness and Kurtosis are given by:

Skewness =
1− 2p√
np(1− p)

Kurtosis = 3− 3

n
+

1

np(1− p)

Mode

The Mode of this distribution is given by one of the following:

1. If p(n + 1) is an integer then the mode is:

p(n + 1)− 1 and p(n + 1)

This case is referred to as the bimodal case since both of these two points have the
greatest value, and hence are the mode.

2. Otherwise, we have a (uni)-modal case where the mode is given by:

largest integer less than p(n + 1)

Cumulative Distribution and Inverse Functions

The cumulative distribution function (F (x, p, n)) of the Binomial distribution in accordance
with the notation introduced above, is given by:

F (x, p, n) =
x∑

i=0

p(x) =
x∑

i=0

Cn
x px(1− p)n−x

which leads us to the following definition of the inverse of the Binomial distribution
(F−1([0, 1]→ N):

F−1(y) = min{x : y ≤ F (x, p, n)}

54

Standard Probability Distributions Documentation Chapter 6

Random Number Generator

Within our component we offer methods by which random numbers are generated from
the Binomial probability distribution. The procedure by which these random numbers are
generated is as follows. For a random number a, within the range [0,1] (i.e. a probability),
we return the integer value for which the cumulative Binomial distribution function is
greater than or equal to the randomly generated number. More precisely, we solve the
following expression:

F−1(a) = min{x : a ≤ F (x, p, n)}

where F (x) is the cumulative distribution function, (F−1 is the inverse (in the sense defined
above) of the cumulative distribution function and x is randomly number generated from
the Binomial distribution.

6.1.2 Poisson Distribution

The Poisson distribution is a discrete distribution used for modeling rare events. The
rarity of the events is characterized by the fact that the probability density function has
a factorial on its denominator, hence the density function is getting very small very quickly.

The Poisson distribution is associated with the Poisson experiment which has the following
two properties:

1. The probability of an occurrence is the same for any two interval of the same length

2. Each occurrence an an interval is independent of any other occurrence of any other
interval

That is, if the above two properties are satisfied then the number of occurrences is a random
variable described by the Poisson probability function.

Parameters

The only parameter of this distribution is λ, and corresponds to the expected value or
mean number of occurrences in an interval. This parameters λ, is required to be strictly
positive (if λ = 0 then the distribution reduces to the trivial case).

Probability Density Function

The Poisson probability density function is given by:

p(x) =
e−λλx

x!
(6.1.4)

where x is the number of occurrences in an interval and the parameter λ corresponds to
the mean (or expected value) of the number of occurrences in an interval.

55

Standard Probability Distributions Documentation Chapter 6

Mean and Variance

The mean and variance are both equal to λ, that is:

Mean = Variance = λ

Skewness and Kurtosis

The Skewness and Kurtosis is given by:

Skewness =
1√
λ

Kurtosis = 3 +
1

λ

Mode

The Mode is this distribution is given by one of the following:

1. If λ is an integer then the mode is:

λ and λ + 1

This case is referred to as the bimodal case since both of these two points have the
greatest value and hence are the mode.

2. Otherwise, we have a (uni)-modal case where the mode is given by:

largest integer less than λ

Cumulative Distribution and Inverse Functions

The cumulative distribution function F (x) : N→ [0, 1], of the Poisson distribution is given
by:

F (x) =
x∑

i=0

e−λλi

i!

From the cumulation distribution it follows that the Inverse, F−1 : [0, 1] → N, of the
cumulative distribution function is given by:

F−1(y) = min{x : y ≤ F (x)}

56

Standard Probability Distributions Documentation Chapter 6

Random Number Generator

Within our component we offer methods by which random numbers are generated from
the Poisson probability distribution. The procedure by which these random number are
generated is as follows. For a random number a, within the range [0,1] (i.e. a probability),
we return the integer value for which the cumulative Poisson distribution function is
greater than or equal to the randomly generated number. More precisely, we solve the
following expression:

F−1(a) = min{x : a ≤ F (x)}
where F (x) is the cumulative distribution function, (F−1 is the inverse (in the sense defined
above) of the cumulative distribution function and x is randomly number generated from
the Poisson distribution.

6.1.3 The Poisson approximation to the Binomial Distribution

Given a Binomial distribution for which the number of trials n is large and their prob-
abilities p is small, the Poisson distribution with mean λ = np provides an adequate
approximation for most situations and is easier to calculate.

6.2 Continuous Probability Distributions

6.2.1 Normal Distribution

Parameters

The parameters of the Normal distribution are µ, which can be any real number and a
scale parameter σ which is can be strictly positive real number. These parameters actually
correspond to the mean and standard deviation of the distribution.

Density and Probability Function

The Normal distribution is a continuous probability distribution with probability density
function:

f(x) =
1√

2πσ2
e−

1
2
(x−µ

σ
)2 ≡ 1√

(2π)σ
e−

1
2
(x−µ

σ
)2 (6.2.5)

where µ is the means of the distribution and σ is standard deviation.

Remarks

� A graph of this function is a bell-shaped curve which is symmetrical about the mean
value, µ. The dispersion about the mean is determined by the value of the standard
deviation, σ.

� We essentially rewrite the formula twice above to emphasize that on the denomina-
tor the fractional coefficient of the function of exponential type has a factor of σ.
Sometimes this factor is written under the square root it which case it becomes σ2.

57

Standard Probability Distributions Documentation Chapter 6

Density and Probability Function

The density function of the distribution is given by:

f(x) =
1√

2πσ2
e−

1
2
(x−µ

σ
)2

where µ is the mean and σ is the standard deviation of the deviation.

The probability (or cumulative) function of an observation lying between a and b
is: ∫ b

a

f(x)dx =

∫ b

a

1√
2πσ2

e−
1
2
(x−µ

σ
)2dx (6.2.6)

where µ is the mean and σ is the variance of the given events.

Remark Since the above integral is not analytic we are forced to use a numerical pro-
cedure in order to evaluate its value we have applied the Extended Trapezoidal rule. We
describe the details of the Extended Trapezoidal rule in last section of this chapter. The
Inverse of the Normal Distribution Within this component we offer methods which allow for
the inverse of this probability distribution to be evaluated. The particular inverse problems
we have covered and there corresponding formulae and method names are as follows:

1. Inverse method solves for b ∈ R, the following equation:

P =

∫ b

−∞

1√
2πσ2

e−
1
2
(x−µ

σ
)2dx

where P ∈ [0, 1], corresponds to the probability of the distribution.

2. InverseFromValue method solves for b there b > a, the following equation:

P =

∫ b

a

1√
2πσ2

e−
1
2
(x−µ

σ
)2dx

where a ∈ R corresponds to the lower bound of the interval considered and P ∈ [0, 1],
corresponds to the probability of the distribution.

3. InverseAroundMean method solves for b ∈ R, the following equation:

P =

∫ µ+b

µ−b

1√
2πσ2

e−
1
2
(x−µ

σ
)2dx

where µ is the mean of the distribution and P ∈ [0, 1], is the probability of the
distribution.

Mean and Variance

As mentioned before the mean is given by µ (one of the parameters), and the standard
deviation by definition is σ2, where σ is the variance of the distribution which is also one
of the parameters of the distribution.

58

Standard Probability Distributions Documentation Chapter 6

Skewness and Kurtosis

The Skewness and Kurtosis is given by:

Skewness = 0

Kurtosis = 3

Mode

The mode of the distribution is given by:

Mode = µ

where µ as mentioned before is the mean of the distribution. Note that the mean is one of
the parameters of the Normal distribution.

Random number generator

We provide a random number generator for the Normal distribution in the following sense.
For a random number a ∈ [0, 1], we return the value of the parameter for which the inverse
Normal Distribution is equal to this randomly generated number. In particular, we find
for which b ∈ R, the following equality is satisfied.

a =

∫ b

−∞

1√
2πσ2

e−
1
2
(x−µ

σ
)2dx

Remark For convenience we also provide a related method in which generates a string
of random numbers from the Normal probability distribution.

6.2.2 Standard Normal Distribution

The Normal distribution is difficult to work with because the probability integral given
above is not analytic. Therefore in most applications a simplification known as the Stan-
dard Normal distribution is used. The Standard Normal distribution assumes that the
Normal distribution satisfies:

� the mean, µ = 0

� the standard deviation, σ = 1

To transform a Normal distribution with mean µ and standard deviation σ, into a Standard
Normal Distribution we apply to each observation x the transformation:

z =
x− µ

σ
(6.2.7)

59

Standard Probability Distributions Documentation Chapter 6

the resulting distribution will have mean equal to zero and standard deviation equal to one.

The above transformation is simply a change of scale:

P (X ≤ A) = P

(
X − µ

σ
≤ A− µ

σ

)
(6.2.8)

All of the functionality available for the Normal distribution such as density, probability,
inverse and random number generator; is also available for the Standard Normal Probability
Distribution.

6.2.3 The Normal approximation to a Binomial Distribution

If we have a Binomial distribution for which the number of observations n is “large”
and the probabilities p are not “too extreme” we can use the Normal distribution as an
approximation to the Binomial distribution. We state this precisely by requiring:

� the mean of this distribution is µ = np

� the standard deviation is σ =
√

npq

Remark Discrete observations are converted into continuous intervals.

6.2.4 Binomial Proportions

Using the Normal approximation to a Binomial distribution, the transformation above
transformation becomes z = x−np√

npq
. Denoting by p̂ the proportion x

n
, we obtain:

z =
p̂− p√

pq
n

(6.2.9)

Thus,

� µp̂ = p

� σp̂ =
√

pq
n

6.2.5 Lognormal Distribution

Parameters

A random variable X has a Lognormal distribution with parameters µ and σ, if Y = ln(X)
has the Normal distribution with mean µ and standard deviation σ.

60

Standard Probability Distributions Documentation Chapter 6

Density Function

The probability density function for this distribution is:

f(x) =
1√

2πσ2x
e−

1
2
(ln x−µ

σ
)2 , x > 0 (6.2.10)

With corresponding probability (or cumulative) function:∫ x

0

f(x) =

∫ x

0

1√
2πσ2x

e−
1
2
(ln x−µ

σ
)2dx

Mean and Variance

The Lognormal distribution has mean:

m = eµ+ 1
2
σ2

(6.2.11)

and variance:
V = e(2µ+σ2)(eσ2 − 1) (6.2.12)

Equivalently:
V = m2α2 (6.2.13)

where α is the coefficient of variation.

Remarks

� The Lognormal distribution is useful for modeling investment returns and the distri-
bution of insurance claim sizes.

� When it is important to guard against underestimating the probability of large claims,
the Pareto distribution given below may be preferred.

Inverse of the Lognormal Distribution

Within this component we offer methods which allow for the inverse of this probability
distribution to be evaluated. In particular the inverse problems we have solved and there
corresponding formulae and method names are as follows:

1. Inverse method solves in x > 0; the following equation:

P =

∫ x

0

1√
2πσ2x

e−
1
2
(ln x−µ

σ
)2dx

where P ∈ [0, 1], is the probability.

2. InverseFromRange method solves for x > 0; the following equation:

P =

∫ x

lowerBound

1√
2πσ2x

e−
1
2
(ln x−µ

σ
)2dx

where P ∈ [0, 1], is the probability and lowerBound is the given lower bound on the
interval considered.

61

Standard Probability Distributions Documentation Chapter 6

Random number generator

We provide a random number generator for the Lognormal distribution in the following
sense. For a random number a ∈ [0, 1], we return the value of the parameter for which the
inverse Lognormal Distribution is equal to this randomly selected value. In particular, we
find for which x ∈ R, the following equality is satisfied.

a =

∫ x

0

1√
2πσ2x

e−
1
2
(ln x−µ

σ
)2dx

Remark For convenience we also provide a related method in which generates a string
of random numbers from the Lognormal probability distribution.

6.2.6 Pareto Distribution

The Pareto distribution is useful for modeling the distribution of insurance claims when
we wish to be cautious in assessing the probability of large claims.

Parameters

The Pareto distribution depends on two continuous real parameters, α ∈ R, and β ∈
R/{0}.

Density and Cumulative Distribution Functions

The Pareto distribution is a continuous distribution with probability density function:

f(x) =
α

β

(
β

x

)α+1

, x > β (6.2.14)

where α ∈ R, β ∈ R/{0}, and cumulative distribution function for x > β:

F (x) = 1−
(

β

x

)α

(6.2.15)

The Inverse of the Pareto Distribution

Within this component we offer methods which allow for the inverse of this probability
distribution to be evaluated. The particular the inverse problems we have covered and
there corresponding formulae and method names are as follows:

1. Inverse method solves for x ∈ R, the following equation:

P = 1−
(

β

x

)α

where P is the given level of probability, i.e. a number within the closed interval
[0, 1].

62

Standard Probability Distributions Documentation Chapter 6

2. InverseFromValue method solves for x > A > β, the following equation:

P = 1−
(

β

x

)α

where P is the given level of probability (i.e. ∈ [0, 1]) and A is the given lower bound.

Mean and Variance

The mean m of this distribution for α > 1, is:

m =
αβ

α− 1
(6.2.16)

and the variance V , for α > 2 is given by:

V =
αβ2

(α− 1)2(α− 2)
(6.2.17)

Random number generator

We provide a random number generator for the Pareto distribution in the following sense.
For a random number a ∈ [0, 1], we return the value of the parameter for which the inverse
Pareto Distribution is equal to this randomly selected value. In particular, we find for
which x ∈ R, the following equality is satisfied.

a = 1−
(

β

x

)α

Remark For convenience we also provide a related method in which generates a string
of random numbers from the Lognormal probability distribution.

6.2.7 Uniform Probability Distribution

The Uniform Probability Distribution with its associated uniform density function is
a continuous probability distribution. A random variable is uniformly distribution is uni-
formly distributed if the probability is proportional to the length of the interval. Where the
probability that the random variable will assume a value in any two intervals is identical
if the intervals are of the same length.

More precisely, the uniform probability density function f(x) for a random variable
x, is given by:

f(x) =
1

b− a
, for a ≤ x ≤ b

f(x) = 0, otherwise

The probability of a random event lying in the interval [c.d], where a ≤ c ≤ d ≤ b, is:

Probability of event =
d− c

b− a

63

Standard Probability Distributions Documentation Chapter 6

Mean and Variance

The mean (or expected value) E(x), of the uniform probability distribution is:

E(x) =
a + b

2

The variance V ar(x), is given by:

V ar(x) =
(b− a)2

12

where as before a ≤ b.

Random number generator

Since all ‘events’ have the same probability the random number generated from the uniform
distribution is just a random element selected from the finite interval in which it is defined,
namely [a, b].

6.2.8 Exponential Probability Distribution

The continuous probability distribution known as the exponential probability distribu-
tion is useful when wishing to describe the time it takes for a given task to be completed1.
The density function f(x), is given by:

f(x) =
1

µ
exp

(
−x

µ

)
, for x ≥ 0, µ > 0

where µ in the mean of the distribution. It then follows that the probability function
P (x ≤ x0), is given by:

P (x ≤ x0) = 1− exp

(
−x0

µ

)
which gives the probability of obtaining a values from the exponential distribution less
than or zero to some given value x0 ∈ R+.

6.3 Supplementary Material on Extended Trapezoidal

rule

In order to evaluate the probability with respect to the Normal Distribution of an observa-
tion lying within the interval [a, b], we have applied the Extended Trapezoidal rule. Within
this section we details the implementation of the Extended Trapezoidal rule.

1The Exponential distribution is closely related to the Poisson distribution by the following fact: If
the time of events follows a Poisson distribution, then the time between events follows an exponential
distribution.

64

Standard Probability Distributions Documentation Chapter 6

We approximate the integral of a function f(x) defined on the interval [a, b], by divid-
ing the region on which the function is integrated over into trapeziums.

The interval [a, b], is divided into n intervals, using n−1 equidistant points x1 < . . . < xn−1.
We approximate the integral of f(x) on the interval [a, b] by:

b− a

2n

(
f(a) + f(b) + 2

n−1∑
k=1

f(xk)

)
(6.3.18)

For further details concerning the Extended Trapezoidal rule please see:

WebCab Differentiation and Integration Documentation

65

http://www.webcabcomponents.com/

Chapter 7

Hypothesis Testing Documentation

Within this module we consider two aspects of inferential statistics known as confidence in-
tervals and hypothesis testing. Inferential statistics addresses the following question, “can we
say something about the population, given only the sample evidence?”. There are a number of
point statistics (i.e. mean, variance etc) which can be applied to a sample set which attempt
to capture a quality of a entire population set. For a given confidence level the amount which
this statistic can vary for different data set samples is referred to as the confidence interval.
Note, that within the estimate of the confidence interval we assume that the underlying data
set is of normal or close to normally distributed.

Often a statistician is not solely interested in estimation but in deciding if some hypothesis
seems reasonable in light of the sample evidence. In many instances the problem is to judge
which of several possible hypothesis is best supported by the sample data. Methods are known
as hypothesis testing and we develop this theory set data sets which are normal or close to
normally distributed.

7.1 Confidence intervals

An interval estimate, or a confidence interval, is an interval of values with a given prob-
ability of covering the true population parameter. This parameter could be a mean, a
variance, a proportion or similar point wise statistic.

It is clear that the sample mean, or proportion will seldom exactly equal the corresponding
population mean, or proportion.

The point estimate alone does not give any idea of the magnitude of the possible sampling
error. A procedure that provides a convenient way of indicating the general magnitude of
the sampling error in any given situation is interval estimation.

Where there is a large degree of sampling error, the confidence interval estimated from
any sample will be large; the range of values likely to cover the population parameter is
wide. On the other hand, if the sampling error is small the parameter is likely to be covered

66

Hypothesis Testing Documentation Chapter 7

by a small estimated range of values.

A confidence interval takes the following form:

x̄± zσ

where x̂ is the sample parameter, z is known as the critical value and depends on the confi-
dence level (p) and σ will be the samples standard error. The probability of the population
parameter lying in the interval x̂± zσ is p.

This is the type of confidence interval we will use. It claims that the true population
parameter (which we do not know) will lie within z standard errors of the sample statistic
with a p% level of confidence.

The way the z-value is calculated from the confidence level depends on the way the entire
population is distributed (i.e. how close to a normal distribution) or on the type of interval
we want to compute (two-sided or one-sided). If the sample size is big enough (> 30) the
normal distribution should be used, but if it is small (< 30) we will use the t-distribution
(also known as the student distribution).

According to the population parameter we are dealing with, the interval type and the
sample size we can compute different types of confidence intervals.

7.1.1 Confidence intervals for large or small samples

When the population standard deviation is known or the sample size is large enough (> 30)
so that the sample’s standard deviation would be a good estimate for the population value
we can use the normal distribution to calculate the critical values.

When the sample size is small (< 30) we can not use the normal distribution anymore
because the standard deviation of the sample (s) does not provide a good estimate for the
population standard deviation (σ). In this case we will use the t-distribution to calculate
the critical values.

7.1.2 One or two sided confidence intervals

To find a ∈ R such that the probability of the statistic x is between −a and a is p%, (which
can be written as: P (−a ≤ x ≤ a) = p%) you must calculate the two sided confidence
interval for the statistic x at p% confidence level. In this case z will be the 1−(1−p/100)/2
percentile of the distribution.

So if you want to find a confidence interval for the statistic at a certain confidence level
looking at both ends of its limits you will compute a two-tailed confidence interval. The
confidence interval will be of the form (−zσ ≤ µ ≤ zσ), where σ is the standard error.

67

Hypothesis Testing Documentation Chapter 7

To find a ∈ R such that the probability of the statistic x is greater than a or smaller
than a is greater than p% (i.e. P (x > a) = p%, or P (x < a) = p%), we must calculate
the one-sided confidence interval for x at p% confidence level. In this case z will be the
right-tailed (1 − p/100) percentile of the distribution in the first case and the left-tailed
(1− p/100) percentile of the distribution in the second case.

If you want to find a confidence interval for the mean at a certain confidence level fo-
cusing on only one end of its limits, you will compute a one-sided confidence interval. The
interval will be of the form (zσ < µ) or (zσ > µ), where σ is the standard error.

Remark The distribution used will be either the standard normal distribution (if we
are in the large sample case) or the student distribution with (n − 1) (single samples) or
(n1 + n2 − 2) (two samples) degrees of freedom where n, n1 and n2 are the sizes of the
small samples being used.

7.1.3 Confidence intervals with one or two samples

Sometimes we will have the results from two samples and we will want to compute a con-
fidence interval for the difference between the samples parameters.

Let assume our sample parameters are x̄1 and x̄2 (means or proportions) and we want
to calculate a confidence interval for x̄1 − x̄2. The two populations must be normally
distributed so that in the large sample case the sampling distribution of x̄1 − x̄2 can be
approximated by a normal probability distribution, and in the small sample case by a
t-distribution.

The critical value z is calculated in the same way as with single samples but the way
we calculate the standard error differs.

7.1.4 Confidence intervals for the mean and percentages

The most common types of population parameters used are means and percentages.

� A mean is calculated by dividing the sum (or integral) of the values by the number
(or range) in the sample. When we calculate confidence intervals for the mean we
need to know the standard error of the sample. For single samples the standard error
is given by:

s√
n

where s is the standard deviation and n is the sample size. For two samples the
standard error is given by: √

s2
1

n1

+
s2
2

n2

where s1 and s2 are the two standard deviations and n1, n2 are the two sample sizes.

68

Hypothesis Testing Documentation Chapter 7

� A percentage is the proportion of data with a certain characteristic in the whole
population. The standard error for proportions is given by:√

p(100− p)

n

for single samples where p is the proportion, n is the sample size. For two samples
the standard error is given by:√

p1(100− p1)

n1

+
p2(100− p2)

n2

where p1, p2 are the proportions and n1, n2 are the samples sizes.

7.2 Hypothesis (or significance) testing

Hypothesis (or significance) testing makes statements about a population parameter, or
parameters, on the basis of sample evidence. This role also applies to confidence intervals.
In the same way that we created a confidence interval for the differences between two
samples, we can also test for such differences.

Hypothesis testing is concerned with accepting or rejecting ideas these ideas are known
as hypothesis . If wish to test one in particular, we refer to it as the null hypothesis .

As a procedure, we first state a null hypothesis; something we wish to judge as true or
false on the basis of statistical evidence. Then we check whether or not the null hypothesis
was consistent with the confidence interval.

Remark A confidence interval can be regarded as a set of acceptable hypothesis.

When we conduct a significance test we have two hypotheses; one related to the sup-
position that we are testing and one which describes the alternative situation.

The first hypothesis relates to the claim, supposition or previous situation and is called the
null hypothesis and is labeled H0. The null hypothesis could be written out as a sentence
but it is more usual to abbreviate it to:

H0 : µ = µ0 (7.2.1)

for a mean where µ0 is the claimed or previous population mean.

For a percentage we have:
H0 : π = π0 (7.2.2)

where π0 is the claimed or previous population percentage.

69

Hypothesis Testing Documentation Chapter 7

The second hypothesis summarizes what will be the case if the null hypothesis is not
true. It is called the alternative hypothesis and is labeled HA. The alternative hypothesis
could be written out as a sentence, but a shorter notation is usually preferred.

For a mean we write:
HA : µ 6= µ0 (7.2.3)

For a percentage we write:
HA : π 6= π0 (7.2.4)

For each hypothesis test that we wish to conduct, the basic procedure will remain the same
and can be summarized in the following steps:

1. State hypotheses

2. State significance level

3. State critical (cut-off) values

4. Calculate the test statistic z

5. Compare the z value to the critical values

6. Make a conclusion

7.2.1 Hypothesis tests for means or percentages

A test statistic for the population mean

In the case of testing for a population mean we calculate the test statistic z (the fourth
step above) with the formula:

z =
x̄− µ

σ/
√

n
(7.2.5)

If we use the sampled standard deviation s instead of the population standard deviation σ
and we assume that the null hypothesis is true than the formula for the z-statistic is given
by:

z =
x̄− µ0

s/
√

n
(7.2.6)

A test statistic for a population percentage

We calculate the z-value with the formula:

z =
p− π0√[
π0(100−π0)

n

] (7.2.7)

where p is the sample percentage and π0 is the claimed population percentage.

The formula for the sampling error is:√
π0(100− π0)

n
(7.2.8)

70

Hypothesis Testing Documentation Chapter 7

Remark The standard error for a percentage is different from the standard error for the
mean.

One-sided significance tests

In this section we specify whether the real value is above or below the claimed value in the
case where we are able to reject the null hypothesis.

We test whether or not the percentage of a sample has decreased. The hypotheses are:

H0 : π = π0

HA : π < π0

If we want to test if the percentage has increased, then the hypotheses are:

H0 : π = π0

HA : π > π0

For the mean the procedure is the same.

Remark One-sided test are sometimes referred to as testing producers’ risks or con-
sumers’ risks .

7.2.2 Hypothesis testing with one or two samples

Previously we worked only with single samples. In many cases we may know little about
the actual population value, but will have available the results of another survey. This
could be a situation where we have two surveys conducted in different parts of the country,
or at different points in time.

Tests may be carry out at the 5% or 1% level, and the interpretation of the results will
depend upon the calculated value of the test statistic and its comparison to a critical
value. We will rewrite the hypotheses to take account of the two sample and to find a new
formulation for the test statistic.

Test for a difference of means

We will refer to the samples using the suffixes 1 and 2 (i.e. sample 1 and sample 2). Our
assumption is that the two samples come from the same population. This assumption gives
us the null and the alternative hypotheses. The null hypothesis is:

H0 : µ1 = µ2

The alternative hypothesis will depend upon whether we are conducting a two-sided test
or a one-sided test. For a two-sided test the alternative hypothesis is:

HA : µ1 6= µ2

71

Hypothesis Testing Documentation Chapter 7

and for a one-sided test, it is:
HA : µ1 < µ2

or
HA : µ1 > µ2

The test statistic we use is closely related to a confidence interval test for the difference
between the two means.

Tests for a difference in population percentage

By modifying the hypotheses and using to corresponding test statistic we are able to
perform hypothesis tests for a difference between population percentages.

7.2.3 Hypothesis testing with large or small samples (t-distribution)

Until now we performed hypothesis tests for large samples with more than 30 elements.
In a similar fashion to confidence intervals we can also perform hypothesis tests for small
samples.

Single samples

When the samples are small we need to use the t-distribution. The basic assumption that
the sampling distribution for the sample parameters is a Normal distribution only holds
when the samples are large.

For a single sample, the test statistic for a population mean is calculated by using:

t =
x̄− µ

s/
√

n
(7.2.9)

with (n− 1) degrees of freedom.

For a single sample, the test statistic for a population percentage is calculated using:

t =
p− π0√
π0(100−π0)

n

(7.2.10)

with (n− 1) degrees of freedom.

Two samples

In the case of estimating a confidence interval for the difference between two means the
pooled standard error (assuming that both samples have similar variability), is given by:

sp =

√
(n1 − 1)s1

2 + (n2 − 1)s2
2

n1 + n2 − 2
(7.2.11)

72

Hypothesis Testing Documentation Chapter 7

We perform the test statistic:

t =
(x1 − x2)− (µ1 − µ2)

sp

√
1
n1
− 1

n2

(7.2.12)

with (n1 + n2 − 2) degrees of freedom.

Remark A special case arises when we are considering tests of the difference of means if
the two samples are related in such a way that we may pair the observations. This may
arise when two different people assess the same series of situations, for example, different
interviewers assessing the same group of candidates for a job.

7.3 Types of error

Samples can only give us a partial view of a population; there will always be some chance
that the true population value really does lie outside the confidence interval, or that we will
come to the wrong decision when conducting a significance test. In fact these probabilities
are specified in the names that we have already used: a 95% confidence interval and a test
of 5% level of significance. Both imply a 5% chance of being wrong.

There are two different types of error:

� Type 1 error is the rejection of a null hypothesis when it is true. This probability
is known as the significance level of the test. This is usually set at either 5% or 1%
for most business applications, and is decided upon before the test is conducted.

� Type 2 error is the failure to reject the null hypothesis, which is false. The proba-
bility of this error cannot be determined before the test is conducted.

7.4 Conclusions

Confidence intervals and hypothesis testing are a very precise way of statistical inference.
But we must not forget that for these methods to work the population we study must be
normal or near to a normal distribution. The standard normal distribution is a continuous
function but when we are dealing with finite samples we are handling discrete functions.
For this reason in order to attain the most reliable conclusions we should use a sample size
which is as large as practically possible.

However, in some situations the samples are small and in these cases the student t-
distribution is used. The student distribution cases should be treated with much more
care because of the higher likely hood of misleading results. In some instances we have
omitted a methods for the small sample case because the chance of obtaining misleading
results is to high.

73

Hypothesis Testing Documentation Chapter 7

Within this component we have methods that work in a wide range of situations for
both large and small sample sets. We provide methods for the most widely used types
of confidence intervals and methods of hypothesis testing.

74

Chapter 8

Programmer’s Guide for Microsoft
r

Office

This chapter describes the steps to take in order to integrate WebCab Probability and Statistics
with most Office documents, such as Excel worksheets, and Access documents. The integration
is achieved both through VBA (Visual Basic for Application) code and features specific to the
Office Application you are using to write your documents. The information in this chapter
applies equally to Microsoft Office 2000, XP, and 2003 Applications and documents.

8.1 Developing with VBA from Office

This section describes how to write a VBA client for a business class documented in the
API Reference for this product. The steps below are the same across all Microsoft Office
Applications (Word, Excel, Access etc.) and involve using the Visual Basic Editor and
writing several lines of code:

1. Open the Visual Basic Editor

2. Add a Code Module

3. Declare a Subroutine

4. Add a Reference to This Product

5. Declare a Class Instance Variable

6. Create a Class Instance

7. Call a Class Method

8. Display the Method Result

9. Run the Subroutine

8.1.1 Open the Visual Basic Editor

In order to add VBA code to your Office document, you will first need to open the Visual
Basic Editor, by going to the Tools | Macro | Visual Basic Editor menu, as shown in figure
8.1.

75

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.1: Starting the Visual Basic Editor in Excel

8.1.2 Add a Code Module

In the upper-left corner of the Visual Basic Editor window, you can find all Office objects
associated with your document. Right click any of the objects and select Insert | Module,
as shown in Fig. 8.2 in order to add a new VBA module to your project. A code window
will appear, where you will be writing the code that will enable you to use this product’s
functionality.

8.1.3 Declare a Subroutine

The first step in writing the code, which makes use of the functionality provided by this
product is to declare a subroutine, which can then be run directly from your Office Appli-
cation. To declare a subroutine, use the Sub and End Sub keywords and the name you wish
to assign to this subroutine. For example, in order to declare a subroutine named run, you
would write the code displayed in Fig. 8.3.

8.1.4 Add a Reference to This Product

Adding a reference to this product is required only once for every Office document that uses
functionality provided by this product. This step will enable VBA code auto-completion
for all business clases and methods that belong to this product, saving you time typing
and browsing the API Reference. Also, it will speed up all calls to this product’s methods,
increasing the overall performance of your project.

76

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.2: Adding a module to a VBAProject

Fig. 8.3: Declaring a subroutine named run in VBA

To add a reference to this product, go to the Tools | References... menu as shown in
Fig. 8.4 in order to open the “References” dialog window. Scroll down and select the entry
named WebCab Probability and Statistics Demo from the list of available references in the
dialog window and then click OK. Figure 8.5 shows how to add a reference to WebCab
Functions Demo.

77

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.4: Opening the “References” window in the Visual Basic Editor for Office

Fig. 8.5: Selecting a reference to a WebCab product, here ‘Functions’

8.1.5 Declare a Class Instance Variable

The API Reference for this product describes all business classes, their methods and prop-
erties, and offers advice on how to use each of them. You can browse the API Reference
from the Start Menu at Programs |WebCab Components | Probability and Statistics for .NET
| COM | API Reference. In order to call methods of a business class listed in the API Ref-
erence, you need to declare a variable to hold a reference to its instance.

78

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.6: Creating a new instance of a class named “Interpolation”

Write a Dim statement to declare a variable of the same type as the business class that you
wish to make calls to. For example, if you wish to call methods belonging to a business
class named “Interpolation” and declare a variable of this type named instance, you would
write the following:

Dim instance As Interpolation

8.1.6 Create a Class Instance

In order to create an instance of a business class listed in the API Reference, you will have
to write code that connects to its corresponding COM server1.

Use the Set keyword in order to assign the class instance to the variable you have de-
clared in the previous step. The Set keyword is required in class instance assignments,
as omitting this keyword would result in a run-time error. The reference assigned to this
instance is created by writing the New keyword, followed by the name of the same business
class you used to declare the variable.

For example, assume you wish to create an instance of a business class named Interpola-
tion, which is located in the WebCab Functions for .NET product. Figure 8.6 shows how
to create an instance of this class and how to assign it to the instance variable declared
in the step above.

1“COM server” is a generic term used to describe a COM interface, which provides functionality to VB
and VBA applications.

79

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Microsoft Office Chapter 8

8.1.7 Call a Class Method

In order to call a method belonging to a business class for which you have created an
instance, you can use the name of the method as listed in the API Reference and append
it to the name of the variable that holds the class instance, separating it with a period.
For example, in order to call a method named MyMethod, you could write the following
line of code:

result = instance.MyMethod (parameter-values)

where parameter-values are the ordered values of the parameters separated by a comma.
The actual type of these parameters and that of the results variable depends on the signa-
ture (i.e. the return type and parameter types) of the MyMethod method.

Remark For a more detailed Visual Basic example of how to invoke a method, see
section 8.1.10.

8.1.8 Display the Method Result

To see what the result of the method call was, you can display it inside a window by calling
the MsgBox function, as shown below:

MsgBox "The result of the method call was " & result

This line of code will display a small dialog window containing the result of the method
call.

8.1.9 Run the Subroutine

After having finished writing the subroutine code as described in the steps below, you can
run the subroutine. There are several ways to run a subroutine, two of which are described
below:

1. Type F5 in the Visual Basic Editor
You can run your subroutine by placing the editing cursor within its body (i.e. be-
tween the Sub and End Sub keywords) and pressing the F5 key. This will instantly
execute the subroutine, bringing up the result window.

2. Run the Soubroutine as a Macro
You can run the subroutine even after having closed the Visual Basic Editor, directly
from the Office Application you are using. Go to the Tools | Macro | Macros... menu,
as shown in Fig. 8.7 to open the “Macro” dialog window. Select the macro, which
has the same name as your subroutine and click Run (see Fig. 8.8).

80

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.7: Opening the “Macro” window from the menu in Excel.

Fig. 8.8: Running a subroutine macro named run from Office.

81

Programmer’s Guide for Microsoft Office Chapter 8

' Declaring a subroutine named `run'
Sub run()

Dim instance As Interpolation
' Creating an new `Interpolation' instance
Set instance = New Interpolation

' Declaring the first parameter (a double array)
Dim x(0 To 4) As Double
x(0) = 1
x(1) = 2
x(2) = 3
x(3) = 4
x(4) = 5

' Declaring the second parameter (a double array)
Dim y(0 To 4) As Double
y(0) = 3
y(1) = 2.4
y(2) = 1.7
y(3) = 1.4
y(4) = 0.7

' Declaring the variable to hold the method result
Dim result As Double

' Calling the `CubicSplinePointwise' method. All other
' parameter values are being written here. The result
' is stored in the `result' variable.
result = instance.CubicSplinePointwise(x, y, -0.6, -0.7, 1.2)

' Printing the result inside a dialog window
MsgBox "The result of the method call was " & result

End Sub

Table 8.1: Generic Office VBA Example

8.1.10 A Generic VBA Example for Office

In this section we provide the complete VBA source code for a subroutine named run,
which makes a call to a method in a business class and prints the result of the method call
inside a window. The same steps mentioned above are being followed in this example.

The code in table 8.1 calls a method named CubicSplinePointwise, belonging to the Interpo-
lation business class in the WebCab Functions product. This method takes five parameters,
of which the first two are one-dimensional arrays and the last three are double values. The

82

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.CubicSplinePointwise.html
http://webcabcomponents.com/dotNET/dotnet/functions/demo.shtml

Programmer’s Guide for Microsoft Office Chapter 8

method returns a double value.

8.2 Integrating with Microsoft Excel

This section is dedicated exclusively to Microsoft Excel users, who wish to tightly and
seamlessly integrate the functionality provided by this product directly into Excel. At the
end of this section, you will have learned how to create your own user-defined functions,
which you can call directly from your worksheets as formulas or from the Insert | Function...
menu. The following steps describe completely how to achieve integration of this product’s
functionality within Excel:

1. Open the Visual Basic Editor

2. Add a Code Module

3. Declare a Function

4. Add a Reference to This Product

5. Declare a Class Instance Variable

6. Create a Class Instance

7. Call a Class Method

8. Store the Method Result as a Function Return Value

9. Insert the Function in your Worksheet

8.2.1 Open the Visual Basic Editor

First you will need to open the Visual Basic Editor, by going to the Tools | Macro | Visual
Basic Editor menu, as shown in figure 8.1. The Visual Basic Editor will allow you to write
the necessary VBA code that uses the functionality provide by this product.

8.2.2 Add a Code Module

In the upper-left corner of the Visual Basic Editor window, you can find all Microsoft Excel
objects associated with your workbook. Right click any of the objects and select Insert |
Module, as shown in Fig. 8.2 in order to add a new VBA module to the existing Visual
Basic project. A code window will appear, where you will be writing the code that will
enable you to use this product’s functionality.

8.2.3 Declare a Function

In the source code window, declare a function using the Function and End Function key-
words. You can pick any name you wish for this function, as you will be able to call it
directly from a worksheet, like a regular Excel formula. You can change the name of the
function at any later time, by simply editing the function declaration. Figure 8.9 shows
how to declare a function named MyFunction.

83

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.9: Declaring a function named “MyFunction” in VBA

8.2.4 Add a Reference to This Product

As described in section 8.1.4, in order to add a reference to this product, you will need to
go to the Tools | References... menu as shown in Fig. 8.4. This will open the “References”
dialog window. Scroll down and select the entry named WebCab Probability and Statistics
Demo from the list of available references in the dialog window and then click OK. Figure
8.5 shows how to add a reference to WebCab Functions Demo.

8.2.5 Declare a Class Instance Variable

The API Reference for this product details all business classes, their methods and proper-
ties, and gives advice on how to use each of them. You can browse the API Reference from
the Start Menu at Programs | WebCab Components | Probability and Statistics for .NET |
COM | API Reference. In order to call methods of a business class listed in the API Refer-
ence, you need to create a variable to hold a reference to its instance.

Write a Dim statement to declare a variable of the same type as the business class that you
wish to make calls to. For example, if you wish to call methods belonging to a business
class named “Interpolation” and declare a variable of this type named instance, you would
write the following:

Dim instance As Interpolation

8.2.6 Create a Class Instance

Use the Set keyword in order to assign the class instance to the variable you have declared
in the previous step. The Set keyword is required in class instance assignments, as omitting
this keyword would result in a run-time error. The reference assigned to this instance is

84

Programmer’s Guide for Microsoft Office Chapter 8

created by writing the New keyword, followed by the name of the same business class you
used to declare the variable.

For example, the Interpolation business class inside the WebCab.COM.Math.Interpolation
namespace has the following full name: WebCab.COM.Math.Interpolation.Interpolation.
In order to create an instance of this class and assign it to the variable we have declared
in the previous step, we would write the following VBA code:

Set instance = New Interpolation

8.2.7 Call a Class Method

In order to call a method belonging to a business class for which you have created an
instance, you can use the name of the method as listed in the API Reference and append
it to the name of the variable that holds the class instance, separating it with a period.
For example, in order to call a method named MyMethod, you would write the following
line of code:

instance.MyMethod (parameter-values)

where parameter-values are the ordered values of the parameters separated by a comma.
The actual type of these parameters and that of the results variable depends on the signa-
ture (i.e. the return type and parameter types) of the MyMethod method.

Remark For a more detailed Visual Basic example of how to invoke a method, see
the next section, 8.2.8.

8.2.8 Store the Method Result as a Function Return Value

The result of the method call must be stored as the method’s return value, by assigning
the method’s result to the the the name of the function itself, as shown below:

MyFunction = instance.MyMethod (parameter-values)

The complete source code of a function named MyFunction is shown in table 8.2. The
example calls the same method as the generic VBA example in section 8.1.10.

8.2.9 Insert the Function in your Worksheet

Switch back to the worksheet window and open the “Insert Function” window from the
Insert | Function... menu (see Fig. 8.10). From the dialog window, click the drop-down list
that lists all the categories, and select the category named “User Defined”, as shown in

85

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html

Programmer’s Guide for Microsoft Office Chapter 8

' Declaring a function named `MyFunction'
Function MyFunction()

Dim instance As Interpolation
' Creating an instance of the `Interpolation' business class
Set instance = New Interpolation

' Declaring the first parameter (a double array)
Dim x(0 To 4) As Double
x(0) = 1
x(1) = 2
x(2) = 3
x(3) = 4
x(4) = 5

' Declaring the second parameter (a double array)
Dim y(0 To 4) As Double
y(0) = 3
y(1) = 2.4
y(2) = 1.7
y(3) = 1.4
y(4) = 0.7

' Calling the `CubicSplinePointwise' method. All other
' parameter values are being written here. The result
' is stored as a return value for this function.
MyFunction = instance.CubicSplinePointwise(x, y, -0.6, -0.7, 1.2)

End Function

Table 8.2: The VBA code for a user-defined function in Excel

figure 8.11.

The name of your function will appear in the list of user-defined functions. Select it
and click the OK button (Fig. 8.12). A window named “Function Arguments” will appear,
asking for values for the arguments. In case your function takes no arguments, as in our
example above, simply click OK, as shown in figure 8.13.

The current cell value will contain the value of a formula, which calls the “MyFunction”
function with no parameters. The result of the formula, listed in the fx formula bar, will
be printed inside the cell, as shown in figure 8.14. You can change the formula directly
from the formula bar, or by opening again the “Insert Function” window.

You can also add a reference to the formula directly from the worksheet, by typing the
value of the formula directly into the cell, without opening the “Insert Function” window,

86

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.10: How to open the “Insert Function” window in Excel

Fig. 8.11: Selecting the “User Defined” category

the same way you would call a standard Excel formula.

87

Programmer’s Guide for Microsoft Office Chapter 8

Fig. 8.12: Selecting the “MyFunction” user-defined function

Fig. 8.13: Inserting the “MyFunction” user-defined function into the worksheet

Fig. 8.14: The value returned by the “MyFunction” formula in an Excel worksheet

88

Chapter 9

Programmer’s Guide for Visual
Studio 6

This chapter is dedicated to Visual Studio 6 developers, programming with either or both of
the Visual Basic 6 and Visual C++ 6 languages. Using WebCab Probability and Statistics from
these languages comes down to connecting to a COM server and making calls to it. The first
section is for Visual Basic 6 developers, while the second section is for Visual C++ 6 developers.

9.1 Developing with Visual Basic 6

This section describes the steps required to use this product from VB6. These steps are
always the same, irrespective of the type of project you are developing. In an example at
the end of this section, we also provide a generic Visual Basic example of how to connect
to our components from a “Standard EXE” Project.

Assuming you have already started a new project or opened an existing project, here are
the steps required to connect and use a WebCab Probability and Statistics COM server:

1. Add a Reference to This Product

2. Declare a Class Instance Variable

3. Create a Class Instance

4. Call a Class Method

9.1.1 Add a Reference to This Product

Adding a reference to this product is required only once for every VB Project that uses
functionality provided by this product. This step will enable VB code auto-completion for
all business clases and methods that belong to this product, saving you time typing and
browsing the API Reference. Also, it will speed up all calls to this product’s methods,
increasing the overall performance of your project.

89

Programmer’s Guide for Visual Studio 6 Chapter 9

Fig. 9.1: Opening the “References” window in Visual Basic 6

To add a reference to this product, go to the Project | References... menu as shown in
Fig. 9.1 in order to open the “References” dialog window. Scroll down and select the entry
named WebCab Probability and Statistics Demo from the list of available references in the
dialog window and then click OK. Figure 9.2 shows how to add a reference to WebCab
Functions Demo.

9.1.2 Declare a Class Instance Variable

The API Reference for this product details all business classes, their methods and proper-
ties, and gives advice on how to use each of them. You can browse the API Reference from
the Start Menu at Programs | WebCab Components | Probability and Statistics for .NET |
COM | API Reference. In order to call methods of a business class listed in the API Refer-
ence, you need to create a variable to hold a reference to its instance.

Write a Dim statement to declare a variable of the same type as the business class that you
wish to make calls to. For example, if you wish to call methods belonging to a business
class named “Interpolation” and declare a variable of this type named instance, you would
write the following:

Dim instance As Interpolation

To avoid name clashing with other classes that may be named the same as the business
class you are instantiating, you can prefix the name of the business class with the name
VB6 assigns to the COM reference to this product. Assuming the name of this reference

90

Programmer’s Guide for Visual Studio 6 Chapter 9

Fig. 9.2: Selecting a reference to a WebCab product, here WebCab Functions

is WebCab_COM_FunctionsDemo, the complete business class name would be referenced as
follows:

Dim instance As WebCab_COM_FunctionsDemo.Interpolation

9.1.3 Create a Class Instance

In order to create an instance of a business class listed in the API Reference, you will have
to write code that connects to its corresponding COM server. Use the Set keyword in order
to assign the class instance to the variable you have declared in the previous step. The Set

keyword is required in class instance assignments, as omitting this keyword would result
in a run-time error. The reference assigned to this instance is created by writing the New

keyword, followed by the name of the same business class you used to declare the variable.

For example, assume you wish to create an instance of a business class named Inter-
polation, which is located in the WebCab Functions for .NET product. The following line
of code will create an instance of this class and assign it to the instance variable declared
in the step above:

Set instance = New Interpolation

91

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Visual Studio 6 Chapter 9

To avoid name clashing with other classes that may be named the same as the busi-
ness class you are instantiating, you would use the complete name of the business class, as
shown below:

Set instance = New WebCab_COM_FunctionsDemo.Interpolation

9.1.4 Call a Class Method

In order to call a method belonging to a business class for which you have created an
instance, you can use the name of the method as listed in the API Reference and append
it to the name of the variable that holds the class instance, the same way you would call
a method or property in Visual Basic. For example, in order to call a method named
MyMethod, you could write the following line of code:

result = instance.MyMethod (parameter-values)

where parameter-values are the ordered values of the parameters separated by a comma.
The actual type of these parameters and that of the results variable depends on the signa-
ture (i.e. the return type and parameter types) of the MyMethod method.

Remark For a more detailed Visual Basic example of how to invoke a method see the
following section, 9.1.5.

9.1.5 A Generic Visual Basic Example

In this section we provide a generic VB6 client example, which invokes a method of a busi-
ness class and prints the result to the screen. Although it might not directly apply to this
product, this example uses a real WebCab product, a real business class, and a real method
name, so that you can test it for yourself by downloading the corresponding Demo package.

The code below calls a method named CubicSplinePointwise, belonging to the Interpola-
tion business class in the WebCab Functions product. This method takes five parameters,
of which the first two are one-dimensional arrays and the last three are double values. The
method returns a double value.

You can use the code in table 9.1 by copy-pasting it inside any of your subroutines or
functions. In our example, we placed the code inside the Form_Load subroutine, which is
being triggered at the time the Application Form is first started.

92

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.CubicSplinePointwise.html
http://webcabcomponents.com/dotNET/dotnet/functions/demo.shtml

Programmer’s Guide for Visual Studio 6 Chapter 9

Private Sub Form_Load()
Dim instance As Interpolation
Set instance = New Interpolation

' Declaring the first parameter (a double array)
Dim x(0 To 4) As Double
x(0) = 1
x(1) = 2
x(2) = 3
x(3) = 4
x(4) = 5

' Declaring the second parameter (a double array)
Dim y(0 To 4) As Double
y(0) = 3
y(1) = 2.4
y(2) = 1.7
y(3) = 1.4
y(4) = 0.7
' Declaring the variable to hold the method result
Dim result As Double

' Calling the `CubicSplinePointwise' method. All other
' parameter values are being written here. The result
' is stored in the `result' variable.
result = instance.CubicSplinePointwise(x, y, -0.6, -0.7, 1.2)

' Printing the result in a Message Box
MsgBox "The value of the function at the point 1.2 is " & result

End Sub

Table 9.1: A generic Visual Basic client example

9.2 Developing with Visual C++ 6

Using this product from Visual C++ 6 involves two major steps: importing the Type
Library for this product and passing parameters to the COM methods according to COM
standards. All the other steps are rather straightforward and involve basic C++ code
writing:

The steps are as follows:

1. Open a New or Existing Project

2. Add All COM Specific ‘include’ Declarations

3. Import the Type Library for this Product

93

Programmer’s Guide for Visual Studio 6 Chapter 9

Fig. 9.3: Starting a new project

4. Call “CoInitialize”

5. Connect to a COM Server

6. Declare the Parameter Types and Values

7. Declare the Return Type

8. Call the Method

9. Call “CoUninitialize”

9.2.1 Open a New or Existing Project

You can start a new Visual C++ Project by going to the File | New... menu (see Fig. 9.3),
which will bring up the “New” dialog window. From this window, choose the “Projects”
tab and select the Win32 Console Application. Type in the name of your project in the
Project name text box (for example, Project1) and click OK, as shown in Fig. 9.4.

In the next window, select “A simple application” (see Fig. 9.5), click the Finish but-
ton, and click OK in the next window as well. From the left hand side of the screen, switch
to “FileView” and select the .cpp file with the same name as your project – as seen in Fig.
9.6. Note that the source code snippets in this section apply both to a new project and to
one of your existing projects.

94

Programmer’s Guide for Visual Studio 6 Chapter 9

Fig. 9.4: Starting a Console Application named “Project1”

95

Programmer’s Guide for Visual Studio 6 Chapter 9

Fig. 9.5: Creating a simple Console Application

96

Programmer’s Guide for Visual Studio 6 Chapter 9

Fig. 9.6: Location of the main C++ source code file, Project1.cpp

9.2.2 Add All COM Specific ‘include’ Declarations

COM specific calls will require that the header file objbase.h is included within your project.
This header offers functionality to enable C++ to interoperate with COM servers. To in-
clude this header file within your project you will need to add at the top of your main
source code file the following line:

#include "objbase.h"

9.2.3 Call “CoInitialize”

In order to allow Visual C++ clients to connect to a COM server, you need to make a call
to a function named CoInitialize, which belongs to the objbase.h header file, mentioned
above. The call to the function must be made as shown below:

CoInitialize(NULL);

97

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_36qt.asp

Programmer’s Guide for Visual Studio 6 Chapter 9

9.2.4 Import the Type Library for this Product

The name of all COM interfaces and their methods are described by a Type Library file
with a .tlb extension. These methods are automatically exposed to your Visual C++ 6
client by the IDE, if you import this .tlb file into your project.

In order to import the Type Library for this product, add an #import declaration (right
after the #include declarations in your main source code file) followed by the complete path
to the COM .tlb file, which is located in the COM Libraries subdirectory of the instalation
path for this product. The default installation path for users with Administrator privileges
is C:\Program Files\WebCab Components\Probability and Statistics for .NET, while the
default installation path for a user without Administrator privileges is C:\Documents and
Settings\User-Name\Local Settings\Application Data\WebCab Components\Probability
and Statistics for .NET.

If you add no_namespace at the end of the #import statement, the COM interfaces will
be placed within the default namespace, so you can access them directly without prefixing
them with the namespace name.

For example, if you installed with Administrator privileges, you can import the Type
Library for this product by writing the following statement:

#import "C:\Program Files\WebCab Components\Probability and Statistics for
.NET\
\COM Libraries\WebCab.COM.StatisticsDemo.tlb" no_namespace

If you omit the no_namespace parameter, the COM methods will be exposed as part of
a namespace called WebCab_COM_StatisticsDemo.

9.2.5 Connect to a COM Server

For every COM server described in the COM API Reference, the previous step defines a
type with the same name prefixed by “COM_” and followed by “Ptr”. Declare a variable of
this type and invoke its method named CreateInstance with the GUID of the COM server
itself as a parameter.

For example, in order to connect to the Interpolation COM server, part of the WebCab
Functions for .NET product, you would write the following C++ code:

COM_InterpolationPtr instance = NULL
instance.CreateInstance(__uuidof(Interpolation));

98

http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Visual Studio 6 Chapter 9

The variable named “instance” will hold the connection to the “Interpolation” COM server
in all subsequent calls.

9.2.6 Declare the Parameter Types and Values

Passing non-array parameters to the COM methods is as straightforward as passing pa-
rameters to a C++ method. You can declare a parameter to hold the value, pass the value
directly, or pass the result of another method call.

When it comes to passing one-dimensional or two-dimensional arrays as parameters to
COM methods, you will need to perform some additional COM specific steps. First of all,
all COM arrays are typed as SAFEARRAY. The SAFEARRAY type holds a pointer to a standard
C++ array, but has some extra fields that describe the type of the array, its number of
dimensions, and most importantly its lower and upper bounds. Handling arrays of this
type can be done fairly easy using standard SAFEARRAY manipulation functions, such as
SafeArrayCreate, SafeArrayRedim, and SafeArrayDestroy.

You will need to pass either one-dimensional or two-dimensional safe arrays to any of
the COM methods within this product. Here is how you can accomplish this from Visual
C++ 6:

� Declaring a One-Dimensional Safe Array
Use the SafeArrayCreateVector function to create a one-dimensional safe array,
by passing the element type, the lower bound and the number of elements the array
has. The element type is one of the types declared by the VARENUM enumeration type.
Of the most common types, you will be using the VT_R8 constant (corresponding to
the double type in the API Reference), VT_I4 (corresponding to the integer type),
VT_DATE (the DateTime type), and VT_BOOL for boolean types.

After making the call to this function, you will need to copy the values referenced by
a C++ one-dimensional array to the memory location referenced by the pvData field
of the safe array structure. This C++ array must hold the values that you wish to
send across to the COM method as a parameter value.

For example, in order to create a one-dimensional array of 4 double elements, here
is how you could define the corresponding safe array and the underlying C++ one-
dimensional array:

99

Programmer’s Guide for Visual Studio 6 Chapter 9

int noElements = 4;
double pvData_myOneDimensionalArray[] = {1, 2, 3, 4};
SAFEARRAY *psa_myOneDimensionalArray = SafeArrayCreateVector(

VT_R8, 0, noElements);
memcpy(psa_myOneDimensionalArray->pvData,

pvData_myOneDimensionalArray, noElements * sizeof(double));

� Declaring a Two-Dimensional Safe Array
In order to declare a two-dimensional array, you will first declare the correspond-
ing C++ two-dimensional array. However, the C++ array needs to be transposed,
such that the number of rows becomes the number of columns and vice-versa. This
is due to the transposed memory layout of safe arrays, opposed to that of C++ arrays.

For example, if to declare an n by m safe array, you will need to declare an m by
n C++ array, and lay the elements in this reversed order.

Also, you will need to make sure that the number of elements of all sub-arrays is
the same, because the two-dimensional safe array is a rectangular array, which as-
sumes fixed number of elements on each dimension.

The safe array structure can be initialized using the SafeArrayCreate function,
which takes the following parameters: the element type, the number of dimensions
(two in our case), and the lower bound and number of elements on each dimension.
The lower bound and number of elements is declared using a SAFEARRAYBOUND struc-
ture, one for every dimension.

Assuming a two-dimensional array of 2 by 4 double elements, its corresponding safe
array and C++ two-dimensional array must be 4 by 2 and its elements must be laid
out as follows:

100

Programmer’s Guide for Visual Studio 6 Chapter 9

int noRows = 2;
int noColumns = 4;
double pvData_myTwoDimensionalArray[4][2] = {
{ 1, 5 },
{ 2, 6 },
{ 3, 7 },
{ 4, 8 },

};

SAFEARRAYBOUND myTwoDimensionalArrayBounds[2];
myTwoDimensionalArrayBounds[0].lLbound = 0;
myTwoDimensionalArrayBounds[0].cElements = noRows;
myTwoDimensionalArrayBounds[1].lLbound = 0;
myTwoDimensionalArrayBounds[1].cElements = noColumns;

SAFEARRAY *psa_myTwoDimensionalArray = SafeArrayCreate(
VT_R8, 2, myTwoDimensionalArrayBounds);

memcpy(psa_myTwoDimensionalArray->pvData,
pvData_myTwoDimensionalArray, noRows * noColumns *

sizeof(double));

The actual values in the safe array are { 1, 2, 3, 4 } on the first row, and { 5,

6, 7, 8 } on the second row.

Before sending a safe array to a COM method, you will also need to perform one last step
– wrap it within a VARIANT type. The VARIANT structure is a generic type that can wrap
around any other COM type. Define a variable of type VARIANT, and use its fields to specify
the type of the safe array and the reference to the safe array structure. To describe the
type of the safe array, use the VT_ARRAY constant and the constant corresponding to the
element type of the array.

For example, a variant corresponding to the two dimensional safe array declared above
will look as follows:

VARIANT myTwoDimensionalArray;
myTwoDimensionalArray.vt = VT_ARRAY | VT_R8;
myTwoDimensionalArray.parray = psa_myTwoDimensionalArray;

A complete list of VARENUM constants corresponding to all COM types that might be re-
quired by this product can be found at this MSDN link.

101

http://msdn.microsoft.com/library/en-us/cpref/html/frlrfsystemruntimeinteropservicesvarenumclasstopic.asp?frame=true

Programmer’s Guide for Visual Studio 6 Chapter 9

SAFEARRAY *twoDimArray;
// A fictive call is made to the COM method
twoDimArray = instance->ComMethod (paramValue1, paramValue2 etc.);

// We read off the lower and upper bounds on each dimension
long l1, u1, l2, u2;
SafeArrayGetLBound(twoDimArray, 1, &l1);
SafeArrayGetUBound(twoDimArray, 1, &u1);
SafeArrayGetLBound(twoDimArray, 2, &l2);
SafeArrayGetUBound(twoDimArray, 2, &u2);

// We read through all elements and print them to the screen
long indices[2]; // the indices for every dimension
for (indices[0] = l1; indices[0] <= u1; indices[0]++) {

for (indices[1] = l2; indices[1] <= u2; indices[1]++) {
double element;
SafeArrayGetElement(twoDimArray, indices, &element);
printf ("twoDimArray[%d,%d] = %lf", indices[0], indices[1],

element);
}

}

Table 9.2: Handling a two-dimensional safe array in C++

9.2.7 Declare the Return Type

COM methods that return arrays require special attention. Instead of declaring a C++
array pointer, you will need to declare a pointer to a SAFEARRAY structure, and assign to
it the result of the method call. Here is how you would declare a variable to hold a safe
array returned by a COM method:

SAFEARRAY *arrayResult;

COM methods that return non-array types can be used like regular C++ methods, by
declaring a variable of the corresponding type and assigning to it the result of the method
call.

9.2.8 Call the Method

You can call a COM method by using the variable that holds the connection to the COM
server and the name of the method, as listed in the COM API Reference. For example,
assuming you wish to call a method named ComMethod, which takes two double values for
parameters and returns a third double value, here is how you could perform this call from

102

Programmer’s Guide for Visual Studio 6 Chapter 9

C++:

double result = instance->ComMethod (10, 20);

Any other COM method calls can be made the same way, by using a different method
name, a different set of parameter values, and maybe a different return type.

Special care must be taken when processing the result of COM methods, which return
a one or two-dimensional array. Since, as described above in section 9.2.7, the type of the
variable to hold the result is a pointer to a SAFEARRAY structure, you will need to use safe
array specific methods, in order to inspect all element values, and reuse them in C++.

Table 9.2 gives an example of how to handle a two-dimensional array, covering most of
the operations you are likely to perform in your C++ applications with safe arrays re-
turned by COM methods.

9.2.9 Call “CoUninitialize”

In order to free generic COM related resources held by a C++ client, you must make a
call to the CoUninitialize function. The call to this function can be made right before the
end of your application or when your client no longer requires to use COM resources. The
line of code which releases all COM resources is:

CoUninitialize();

9.2.10 A Generic Visual C++ Example

In this section we provide a generic Visual C++ example of a simple Console Application,
which connects to one of our business classes, invokes one of its methods and prints the re-
sult in a window. This source code example works with a new Win32 Console Application,
which can be created as described in section 9.2.1. Since this example’s structure in not
specific to the method being invoked, you may adapt this example to whatever business
class, product, and method you wish to call.

This C++ application calls a method named RelativeToAbsolute, belonging to the As-
setParameters business class in the WebCab Portfolio for .NET product. This method
takes one two-dimensional double array parameter and returns another two-dimensional
double array.

103

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_7vqd.asp
http://webcabcomponents.com/dotNET/dotnet/portfolio/API/NET/WebCab.Libraries.Finance.Portfolio.AssetParameters.RelativeToAbsolute.html
http://webcabcomponents.com/dotNET/dotnet/portfolio/

Programmer’s Guide for Visual Studio 6 Chapter 9

// Project1.cpp, a Simple Win32 Console Application
//

#include "stdafx.h"
#include "objbase.h"
#include "stdio.h"

// Adding a reference to the Portfolio COM Type Library
#import "C:\Program Files\WebCab Components\Portfolio for .NET\
\COM Libraries\WebCab.COM.PortfolioDemo.tlb" no_namespace

int main(int argc, char* argv[])
{

CoInitialize(NULL); // Enable C++ to COM interoperability

/*
* Declare a variable to hold the connection to the
* `AssetParameters' COM server and establish
* the connection using its GUID.
*/

COM_AssetParametersPtr instance = NULL;
instance.CreateInstance(__uuidof(AssetParameters));

int noRows = 2;
int noColumns = 4;
// Reverse the dimensions for the C++ array, by declaring first
// the number of columns and then the number of rows.
double pvData_absoluteValues[4][2] = {
{ 100, 140 },
{ 120, 135 },
{ 125, 135 },
{ 115, 140 },

};
SAFEARRAYBOUND bounds[2];
bounds[0].lLbound = 0;
bounds[0].cElements = noRows;
bounds[1].lLbound = 0;
bounds[1].cElements = noColumns;
SAFEARRAY *psa_absoluteValues = SafeArrayCreate(VT_R8, 2, bounds);
memcpy(psa_absoluteValues->pvData,

pvData_absoluteValues, noRows * noColumns * sizeof(double);

Table 9.3: Generic VC++ example (continued on the next page)

104

Programmer’s Guide for Visual Studio 6 Chapter 9

VARIANT absoluteValues;
absoluteValues.vt = VT_ARRAY | VT_R8;
absoluteValues.parray = psa_absoluteValues;

// Call the `AbsoluteToRelative' COM method
SAFEARRAY *relativeValues;
relativeValues = instance->AbsoluteToRelative(absoluteValues);

// Print the result inside a MessageBox
char text[200] = "";
long indices[2];
long l1, u1, l2, u2;
SafeArrayGetLBound(relativeValues, 1, &l1);
SafeArrayGetUBound(relativeValues, 1, &u1);
SafeArrayGetLBound(relativeValues, 2, &l2);
SafeArrayGetUBound(relativeValues, 2, &u2);
for (indices[0] = l1; indices[0] <= u1; indices[0]++) {

sprintf (text, "%s{ ", text);
for (indices[1] = l2; indices[1] <= u2; indices[1]++) {

double element;
SafeArrayGetElement(relativeValues, indices, &element);
sprintf (text, "%s%lf ", text, element);

}
sprintf (text, "%s}\n", text);

}

MessageBox(NULL, text, "The Relative Values", MB_OK);

CoUninitialize(); // Free all COM specific resources
return 0;

}

Table 9.4: Generic VC++ example (continued)

105

Chapter 10

Programmer’s Guide for Borland
C++ Builder

This chapter contains information concerning the use of this Component product from Borland’s
C++ Builder product lines; include Borland C++ 2005, Borland C++BuilderX and Borland
C++Builder; on the Windows development platform. The principles and code examples pro-
vided here can be applied verbatim in order to use this component with the C++ language
on the Windows development platform. Though the use of the different IDE products lines
will differ slightly, the same Windows client code can be used verbatim within any of the C++
Builder product lines.

10.1 Developing with Borland C++ Builder

In order to connect and make calls to our COM servers from Borland C++ Builder, you
will need to write late-binding code.

The steps are as follows:

1. Open a New or Existing Project

2. Add all COM Specific ‘Include’ Declarations

3. Call “CoInitialize”

4. Create a Class Instance

5. Obtain a Method ID

6. Declare the Parameter Values and Types

7. Declare the Return Type

8. Call the Method

9. Call “CoUninitialize”

106

Programmer’s Guide for Borland C++ Builder Chapter 10

Fig. 10.1: Starting a new project

10.1.1 Open a New or Existing Project

You can start a new Borland C++ Builder Project by going to the File | New... menu (see
Fig. 10.1), which will bring up the “Object Gallery” dialog window. From this window,
choose the “Project” left-hand item, select the New Console project and click OK, as shown
in Fig. 10.2.

Type in the name of your project in the next dialog window and click Next (see fig.
10.3). In the next window (figure 10.4) simply click Next, and in the last window, select
the checkbox next to the untitled entry and click the Finish button, as shown in figure 10.5.

107

Programmer’s Guide for Borland C++ Builder Chapter 10

Fig. 10.2: Starting a Console Application

Fig. 10.3: Choosing a name for a new Borland C++ Console Application

108

Programmer’s Guide for Borland C++ Builder Chapter 10

Fig. 10.4: Selecting platforms and tools sets for a new Borland C++ Console Application

10.1.2 Add all COM Specific ‘Include’ Declarations

COM specific calls will require that the header file objbase.h is included within your project.
This header offers functionality to enable C++ to interoperate with COM servers. To in-
clude this header file within your project you will need to add at the top of your main
source code file the following line:

#include "objbase.h"

10.1.3 Call “CoInitialize”

In order to allow Borland C++ Builder clients to connect to a COM server, you need to
make a call to a function named CoInitialize, which belongs to the objbase.h header file,
mentioned above. The call to the function must be made as shown below:

CoInitialize(NULL);

109

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_36qt.asp

Programmer’s Guide for Borland C++ Builder Chapter 10

Fig. 10.5: Specifying the project files for a new Borland C++ Console Application

10.1.4 Create a Class Instance

In order to create an instance of a WebCab Probability and Statistics business class, you
will need to provide the full name (i.e. the ProgId) of the business class, as declared within
the API Reference. The full name of a business class contains the namespace, followed by
a period and the name of the class itself.

The C++ code below returns an instance of the Interpolation business class, located inside
WebCab Functions for .NET. Its namespace is WebCab.COM.Math.Interpolation, meaning
its full name is WebCab.COM.Math.Interpolation.Interpolation. You can easily adapt the
code below to create an instance of another business class, by replacing the ProgId below
with the full name of the class you wish to use.

110

http://msdn.microsoft.com/library/en-us/com/htm/registry_0795.asp
http://webcabcomponents.com/dotNET/dotnet/functions/API/COM/WebCab.COM.Math.Interpolation.Interpolation.html
http://webcabcomponents.com/dotNET/dotnet/functions/

Programmer’s Guide for Borland C++ Builder Chapter 10

CLSID clsid;
CLSIDFromProgID(OLESTR(// Get the CLSID of the ProgId

"WebCab.COM.Math.Interpolation.Interpolation"),
&clsid);

LPDISPATCH instance = NULL; // the COM `instance'
LPUNKNOWN punk = NULL;

CoCreateInstance (clsid, NULL, CLSCTX_INPROC_SERVER,
IID_IUnknown, (void**) &punk);

punk->QueryInterface(IID_IDispatch, (void**) &instance);
punk->Release();

The variable named “instance” will hold the connection to the “Interpolation” COM server.

10.1.5 Obtain a Method ID

In order to call a method using the instance created above, you will need to obtain a ref-
erence to its ID. Use the code below to obtain the ID of the method you wish to call, by
replacing the generic method name “MyMethod” with the name of the method you wish
to call. The variable “methodID” will hold the reference to the method.

DISPID methodID; // The ID of the method

/*
* Replace `MyMethod ' with the name of the method you wish to call
*/

wchar_t *methodName = L"MyMethod";
instance->GetIDsOfNames(IID_NULL, &methodName, 1, LOCALE_USER_DEFAULT,

&methodID);

10.1.6 Declare the Parameter Values and Types

For every parameter, you will need to declare a variable of type VARIANT, whose type will
be set to the type of the parameter, and its value will correspond to the value you wish
the parameter to take. The code listed in table 10.1 shows how to declare the parameter
values for a method that takes two double parameters.

For information about how to set other types of parameters, such as integers, boolean
values, and arrays; we refer the reader to this ‘IDispatch Data Types and Structures’
article on Microsoft’s MSDN site.

111

http://msdn.microsoft.com/library/en-us/automat/htm/chap6_7zdz.asp
http://msdn.microsoft.com/library/en-us/automat/htm/chap6_7zdz.asp

Programmer’s Guide for Borland C++ Builder Chapter 10

int noParameters = 2; // the number of parameters
// 1st parameter
VARIANTARG parameter1;
parameter1.vt = VT_R8; // 8-bit real type
parameter1.dblVal = 100.0; // 100.0
// 2nd parameter
VARIANTARG parameter2;
parameter2.vt = VT_R8; // 8-bit real type
parameter2.dblVal = 95.0; // 95.0

DISPPARAMS parameters; // the list of parameters
memset(¶meters, 0, sizeof(DISPPARAMS));
parameters.cArgs = noParameters;
parameters.rgvarg = new VARIANTARG[noParameters];
memset(parameters.rgvarg, 0, sizeof(VARIANT) * noParameters);

// Add the parameters in reverse order
parameters.rgvarg[1] = parameter1;
parameters.rgvarg[0] = parameter2;

Table 10.1: Declaring parameter types and values for a COM method

10.1.7 Declare the Return Type

A VARIANT variable needs to be declared for the return value of the method as well. The
type of the VARIANT will be automatically set by the method invocation, so you will only
need to initialize its type to VT_EMPTY by calling the VariantInit function.

VARIANTARG result; // Variable to hold the result
VariantInit(&result);

10.1.8 Call the Method

Calling the method comes down to using all the variables declared in the previous steps (the
instance, the method ID, the parameters, and the return value) in one call, as shown below:

// Call the underlying method
instance->Invoke(methodID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, ¶meters, &result, 0, NULL);

The return value of the method is stored in the result variable, in the field corresponding
to the method’s return type. For example, if the method returns a double, you will write
the following code in order to store the result in a double variable named “resultAsDouble”:

112

Programmer’s Guide for Borland C++ Builder Chapter 10

// Get the result as double
double resultAsDouble = result.dblVal;

10.1.9 Call “CoUninitialize”

In order to free generic COM related resources held by a C++ client, you must make a
call to the CoUninitialize function. The call to this function can be made right before the
end of your application or when your client no longer requires to use COM resources. The
line of code which releases all COM resources is:

CoUninitialize();

10.1.10 A Generic Borland C++ Builder Example

In this section (tables 10.2 and 10.3) we provide a generic Borland C++ Builder example
of a simple Console Application, which connects to one of our business classes, invokes one
of its methods and prints the result in a window. The source code below works with a new
Win32 Console Application, which can be created as described in section 10.1.1. Since
this example’s structure in not specific to the method being invoked, you may adapt this
example to whatever business class, product, and method you wish to call.

This C++ application calls a method named Kairi, belonging to the MovingAverage busi-
ness class in the WebCab Technical Analysis for .NET product. This method takes two
double parameters and returns a double value.

113

http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_7vqd.asp
http://www.webcabcomponents.com/dotNET/dotnet/ta/API/COM/WebCab.COM.Finance.Trading.Indicators.MovingAverage.Kairi.html
http://webcabcomponents.com/dotNET/dotnet/ta/demo.shtml

Programmer’s Guide for Borland C++ Builder Chapter 10

// Project1.cpp, a Simple Win32 Console Application
//

#include "objbase.h"
#include "stdio.h"

int main(int argc, char* argv[])
{

CoInitialize(NULL); // Enable C++ to COM interoperability

CLSID clsid;
CLSIDFromProgID(OLESTR(// Get the CLSID of the ProgId

"WebCab.COM.Finance.Trading.Indicators.MovingAverage"),
&clsid);

LPDISPATCH instance = NULL; // the COM `instance'
LPUNKNOWN punk = NULL;

CoCreateInstance (clsid, NULL, CLSCTX_INPROC_SERVER,
IID_IUnknown, (void**) &punk);

punk->QueryInterface(IID_IDispatch, (void**) &instance);
punk->Release();

DISPID methodID; // The ID of the method

// The method name is `Kairi'
wchar_t *methodName = L"Kairi";
instance->GetIDsOfNames(IID_NULL, &methodName, 1, LOCALE_USER_DEFAULT,

&methodID);

int noParameters = 2; // the number of parameters
// 1st parameter
VARIANTARG parameter1;
parameter1.vt = VT_R8; // 8-bit real type
parameter1.dblVal = 100.0; // 100.0
// 2nd parameter
VARIANTARG parameter2;
parameter2.vt = VT_R8; // 8-bit real type
parameter2.dblVal = 95.0; // 95.0

Table 10.2: Generic VC++ example – Part 1

114

Programmer’s Guide for Borland C++ Builder Chapter 10

DISPPARAMS parameters; // the list of parameters
memset(¶meters, 0, sizeof(DISPPARAMS));
parameters.cArgs = noParameters;
parameters.rgvarg = new VARIANTARG[noParameters];
memset(parameters.rgvarg, 0, sizeof(VARIANT) * noParameters);

// Add the parameters in reverse order
parameters.rgvarg[1] = parameter1;
parameters.rgvarg[0] = parameter2;

VARIANTARG result; // Variable to hold the result
VariantInit(&result);

// Call the `Kairi' method
instance->Invoke(methodID, IID_NULL, LOCALE_SYSTEM_DEFAULT,

DISPATCH_METHOD, ¶meters, &result, 0, NULL);
delete [] parameters.rgvarg;

// Get the result as double
double percentage = result.dblVal;
// Print the result inside a MessageBox
char text[200];
sprintf(text, "The percentage is %lf", percentage);
MessageBox(NULL, text, "Method result", MB_OK);

CoUninitialize(); // Free all COM specific resources
return 0;

}

Table 10.3: Generic VC++ example – Part 2

115

Chapter 11

Programmer’s Guide for .NET

This chapter describes development techniques for various business solutions that make use
of the functionality provided by our .NET Service. We analyze both standard and enterprise
solutions, including stand-alone applications, ASP.NET pages, and XML Web services.

11.1 Developing with .NET Class Libraries

The .NET Edition of this product offers core-level functionality to the .NET developer
allowing the implementation of fully personalized components and applications for specific
business problems on a variety of deployment environments. Irrespective of the complexity
of the project a programmer may be working on, this .NET Service can be integrated in
an equally straightforward manner by providing the needed functionality in a compact and
precise way.

The Probability and Statistics for .NET v3.3 component comes as a collection of DLL
files. Each DLL is a packed collection of classes that provide the functionality offered
by this .NET Service as documented inside the API reference directory of this package.
Depending on the type of .NET solution you are developing, you will be using these DLL
files in a specific way. Once you have chosen a particular implementation of a deployment
framework, the structure of your source code will need to adapt accordingly. In the follow-
ing discussion we describe several basic .NET implementation examples that can be used
to make use of our product’s functionality.

11.1.1 Stand-alone C# .NET Applications

A stand-alone C# application is a C# class which acts as a client for the deployed .NET
components (i.e. DLLs). The source code listed below defines a standard stand-alone
application skeleton which communicates with a class within a .NET Component. By cre-
ating an instance, calling a method, sending in a set of parameters and then retrieving the
returned result of the method call. As soon as the method call has gone through success-
fully the method continues by displaying its result on the screen.

116

Programmer’s Guide for .NET Chapter 11

/*

* The class we are is located inside the WebCab.Libraries.NetService

* namespace.
*/

using System;

using WebCab.Libraries.NetService;

public class StandAloneExample {

public static void Main () {

/*

* Creates an instance of the NetClass class
*/

NetClass instance = new NetClass ();

/*

* Defines the method parameter.
*/

double parameter = 25;

/*

* Invokes a method with the specified parameter
* and puts the result in the result variable.
*/

double result = instance.ComputeResult (parameter);

/*

* Prints out the retrieved result.
*/

Console.WriteLine ("Method ’ComputeResult’ in class NetClass

returned " + result + ".");

}

}

If the method ComputeResult of the NetClass class returned 100, this stand-alone appli-
cation would print the following:

Method ’ComputeResult’ in class NetClass returned 100.

117

Programmer’s Guide for .NET Chapter 11

11.2 Developing with XML Web Services

This component has been XML Web service enabled and the relevant deployment files can
be deployed which means that you may deploy the Application as a web service and make
the methods contained therein available as XML Web service methods.

11.2.1 Deploying the XML Web Services

Using Windows XP with .NET Framework and IIS installed

In order to deploy this .NET Service as an XML Web service you will need to go through
the following steps:

� Copy DLL Files - copy the DLL files provide into the bin directory of the IIS servers
directory. On the standard install this is located at:

C:\Inetpub\wwwroot\bin

� Copy asmx Files - now copy the asmx files included into the folder:

C:\Inetpub\wwwroot\

Now the web service can be accessed through the URL:

http://localhost/WebServices/filename.asmx

Remarks

1. If you prefer to change the URL in which the XML Web service can be accessed
then just create and then copy the asmx files into another subfolder of the ‘wwwroot’
directory, in which case the corresponding URL of the web service will corresponding
change.

2. In order to copy the installation files to your IIS location you will need to have
appropriate read and write access to the folder under question.

11.2.2 Writing XML Web Service Clients

The building of an XML Web service client will require the following steps:

� Create a proxy class for the XML Web service.

� Reference the proxy class in the client code.

� Create an instance of the proxy class in the client code.

118

Programmer’s Guide for .NET Chapter 11

� Call the method on the proxy class corresponding to the XML Web service method
you want to communicate with.

For most clients, these steps differ only on how the proxy class is referenced and how the
XML Web services are deployed.

11.2.3 Writing Console XML Web Service Clients

An XML Web service client may take a number of forms including a console application,
ASP.NET page, HTML page, Windows Form, Java Applet/Frame and any other XML
Web service enabled client technology.

Here in order to illustrate the core step involved in making a client we describe the steps
required to build a console application. Creating other types of clients will involve similar
steps. We assume that you have the .NET Framework installed (on the client and server)
and that the IIS server has (been installed and) started on the server.

To create a console XML Web service client application you must:

� Deploy the DLL provided into a bin which you need to create somewhere in a subdi-
rectory of the IIS web server you plan to use. The default location for this web server
on your local machine is ‘C:\Inetpub\wwwroot’. The DDL is the required XML Web
service .NET assembly file.

� Deploy the web service descriptor ‘Classname.asmx’ provided, into a IIS web-server
subdirectory.1 Note that we will assume below that the URL of the deployed Class-
name.asmx file is:

http://yourserver/Webservices/Classname.asmx

� Create a XML Web service proxy by using the WDLS command line tool. Enter a
DOS prompt in the directory where you intend to (develop and) run your console
application from and type at the command line:

Wsdl.exe http://yourserver/Webservices/Classname.asmx

That is ‘Wsdl’ followed by the URL of the asmx file for the XML Web service. This
utility will generate a C# file which will be written to the present directory (which
should be the clients directory)2. The WSDL file is an interface (in OOP terminology)
or proxy for the DLL C# implementation of the XML Web service.

1The purpose of the asmx file is to tell the server that the XML Web service exists so that it may start
searching for the relevant classes within the DLL files in the bin directory. Hence, the asmx file is very
simple and consists of the one line:

<%@ WebService language="C# " class="Classname" %>

and is saved as a TXT file with an extension .asmx.
2WSDL is a standard by which all XML Web services are described. See http://www.w3.org/TR/wsdl

119

http://www.w3.org/TR/wsdl

Programmer’s Guide for .NET Chapter 11

� Write a console application in the standard way and instantiate the WebService meth-
ods (as if the DLL is hosting locally) using the WSDL proxy. See the below template:

using System;

public class ClassnameClient {
/// <remarks>

/// The Main method ensures that the console will run.

/// </remarks>

static void Main() {
/*

* We instantiate the "object" represented by

* the proxy class.

*/

Classname classnameObject = new Classname();

/*

* We invoke the ‘Compose’ method of the

* Classname XML Web service

*/

Console.WriteLine("XML Web service method Compose

applied to 7.0 and 3.9 is " +

classnameObject.Compose(7, 3.9));

}
}

120

Programmer’s Guide for .NET Chapter 11

11.2.4 Importing Web services into Visual Studio .NET projects

Fig: Adding a Web reference.

Fig: Adding a Web reference.

121

Programmer’s Guide for .NET Chapter 11

11.3 Connecting to a Database with our .NET Li-

braries

11.3.1 Overview

Most of the financial and mathematical functionality provided by this .NET Service is in-
tended for use within a multi-tier environment where the back-end role is taken by an SQL
Database server. By packaging this functionality within .NET components such as XML
Web services and .NET Class Libraries we separate the business logic from the database
logic, allowing you to customize the way you access the database and the way the retrieved
data is sent to the business methods.

In order to assist you in developing DBMS based .NET solutions, we provide the ADO
Mediator as a standardized way of using our .NET components with an SQL Database
server. The ADO Mediator is also a .NET component, which sits on the same level as the
other financial and mathematical .NET components and is a seamlessly integrated compo-
nent of this .NET Service. While reducing the amount of DBMS code you have to type, it
allows you to concentrate on the SQL queries and procedure calls to the Database server
and map the stored data directly to the business methods of this .NET Service.

The ADO Mediator’s functionality has been enabled for use with the following modules
contained within the WebCab Probability and Statistics for .NET v3.3:

� The “Hypothesis Testing” Module

� The “Correlation and Regression” Module

� The “Standard Probability Distributions” Module

11.3.2 The ADO Mediator

There is one ADOMediator class for every module in this .NET Service. You will use the
corresponding ADOMediator class for performing Database operations with classes of a cer-
tain module. The ADO Mediator class is located inside the ‘ADO’ subnamespace of its
corresponding module. For example if a module contains the:

WebCab.Libraries.Finance.Trading

namespace, its ADOMediator class will be found under:

WebCab.Libraries.Finance.Trading.ADO.ADOMediator.

Configuring the ADO Mediator

There are three steps to perform in order to start using an ADO Mediator class:

1. Specify the ADO.NET Driver
The constructor accepts an input connection and an output connection. There is no

122

Programmer’s Guide for .NET Chapter 11

restriction that you should provide both an input and an output connection. You
may choose to read data and display it inside your Application, compute data and
write it into the database, or read and write to and from the database, and specify
only the input or output database connection.

Connecting to your database requires an ADO.NET Driver. This driver is a .NET
class which is part of a DLL file provided by your Database vendor. You specify
the driver you wish to use by sending in to the ADOMediator constructor its run-time
type. That is, if your driver class name is System.Data.SqlClient.SqlConnection3,
its run-time type under C# is specified by typing inside your source code:

typeof (System.Data.SqlClient.SqlConnection)

2. Provide the input/output ConnectionString property
The ConnectionString property is a piece of text which describes the Database server
machine address, the credentials, and additional information required in order to
obtain access to certain parts of your Database server. This piece of text is always
documented by the provider of the ADO.NET Driver and should be used as such when
submitting it to an ADOMediator constructor. An example for the previous ADO.NET
SQL Server driver would be:

"Initial Catalog=Northwind;Data Source=localhost;Integrated Security=true;"

You may easily notice that the string above describes the machine name and the initial
catalog to connect to. The Integrated Security=true bit enables you to connect to
the SQL Server 2000 by using the current Windows login username and password.

3. Assign a business .NET component
The previous two steps are part of creating an instance of an ADOMediator class and
taking care of the Database connections. This third step involves specifying the busi-
ness class belonging to this module which deals with the financial and mathematical
functionality. Choose a class of the corresponding module and assign an instance of
this class to the UnderlyingInstance property of the previously created ADOMediator

instance.

For example, if the name of the class you choose is TradingClass, you could write the
following C# code4:

TradingClass aTradingClassInstance = new TradingClass ();
adoInstance.UnderlyingInstance = aTradingClassInstance;

Using the ADO Mediator

Once these three steps have been performed, you may use the created ADOMediator instance
to perform Database related calculations using the assigned .NET business class. There

3The built-in ADO.NET driver class name for connecting to the MS SQL Server
4We assume adoInstance is the name of the previously created ADOMediator instance.

123

Programmer’s Guide for .NET Chapter 11

are several methods which you may use with your ADO Mediator instance. Some methods
allow you to read from the database and perform calculations for every retrieved row, and
then store the result in a .NET variable. Other methods allow you to specify the input
values and write the result in the database. There are also methods which allow you to
read the input parameters from the database and write the method results back into the
database in one go.

The basic methods of the ADO mediator are:

� Select Method - Allows you to retrieve the results of a method of your choice belong-
ing to the underlying business class instance, applied to every row of an SQL SELECT

query.

� Update Method - Directly updates values inside your database, as returned by a
method belonging to the underlying business class instance.

� SelectAndUpdate Method - Allows you to combine the two methods mentioned above
by selecting the data, computing the results and writing it back to the database,
according to your own criteria.

A complete API reference for these methods is found inside the Documentation folder of
this pack. The Windows Installer (MSI) for this .NET Service has also created a short cut
to this documentation from the Start Menu.

How the ADO Mediator Works

The way the ADO Mediator processes requests from the client and transfers them to the
.NET components and the Database is shown in the diagram below.

124

Programmer’s Guide for .NET Chapter 11

Fig: This diagram describes how the ADO Mediator passes onto the Database and
the .NET components its client requests.

C# Source Code Example

The following C# source code makes use of the ADO Mediator’s functionality in order to
read and update the database according to a known algorithm. We use the standard SQL
Server ADO.NET Driver to connect to a fictitious table named TRADES, and invoke the
TradingMethod method of the TradingClass business class.

125

Programmer’s Guide for .NET Chapter 11

using System;
using System.Data.SqlClient;
using WebCab.Libraries.Finance.Trading;
using WebCab.Libraries.Finance.Trading.ADO;
...
try {
...
/*
* We specify the same driver and connection string for both the input and output
* connections to the SQL Server 2000 Database server.
*/

ADOMediator adoInstance = new ADOMediator (
typeof (SqlConnection), // Input

"Initial Catalog=Northwind;Data Source=localhost;Integrated Security=true;",
typeof (SqlConnection), // Output

"Initial Catalog=Northwind;Data Source=localhost;Integrated Security=true;");

/*
* We assign an instance of the TradingClass business class to the newly created
* instance of this ADO Mediator.
*/

adoInstance.UnderlyingInstance = new TradingClass ();

/*
* We invoke the SelectAndUpdate method which will populate the table according to
* the result of the method and the position of the input values in the database.
*/

adoInstance.SelectAndUpdate ("TradingMethod",
"SELECT C ID, SHARES, VALUE FROM TRADES", // Select
"UPDATE CUSTOMER SET MONEY=@MONEY WHERE C ID=@C ID", // Update
"@MONEY", // Maps the ‘TradingMethod’ method result to @MONEY
{new Object[] {"@C ID", "C ID"}}, // Maps C ID to @C ID
false); // True when updating with a stored procedure

}
catch (ADOMediatorException e) {
Console.WriteLine (e);
}

Using ADO Mediator with SQL Server 2000

The ADO Mediator instance above requires the same information as in the case of writing
your own ADO.NET source code. The difference lies in the fact that you do not have to
manually control the driver specific operations such as opening and closing a connection,
and only concentrate on your SQL queries and the functionality of our business classes.
You start by following the three steps mentioned above5 and continue by making calls to
any ADOMediator methods.

5Specifying the input and/or output ADO.NET drivers and their connection strings and assigning an
instance of the fictitious TradingClass business class.

126

Programmer’s Guide for .NET Chapter 11

As you may notice, the SelectAndUpdate method above follows a logical pattern of de-
scribing how the data should be read from the database, computed, and written back,
with special care to the use of named parameters. You do not require previous experience
in dealing with named parameters, as they are basically a way to substitute real values with
names inside SQL queries. You may have spotted the @MONEY and @C ID named parameters
in our UPDATE statement above. These named parameters will be replaced with real values,
taken either from the TradingMethod’s result, or directly from a column returned by the
SELECT query.

In our case, we replace @MONEY with the result of applying the TradingMethod method6

to the values of the SHARES and VALUE columns returned by the SELECT query. The sec-
ond named parameter (@C ID) is replaced directly by the value of the C ID column of the
SELECT query. For more information about named parameters you may wish to consult your
ADO.NET driver’s manual. Most special cases are related to the use of named parameters
and have been covered by the current version of the ADO Mediator.

11.4 Statistics Module Functionality

This module helps to solve statistics problems related to:

� Measures of Mean

� Measures of Dispersion

� Frequency Tables

The input data can be passed to the component using the methods SetArray and SetBoundaries.
The component keeps the two arrays inside itself so the methods can use them. If you
want to change the set of input data there can be called again the methods SetArray,
SetBoundaries for the new data.

To get the set of input data use the get/setArray and Get/SetBoundaries methods.

11.5 Discrete Probability Module Functionality

The Discrete Probability module offers methods and procedures from the theory of discrete
probability. It can be seen as consisting of three parts:

1. Discrete Probability

Let there be a family of elementary events (represented by a finite set of integer num-
bers), in a simple space S, and a probability function (also represented by a finite set
of real numbers) that associates with each event its probability as a real number. The
two sets can be passed to the SetProbability method, after the component’s creation.

6Which in our example belongs to the fictitious TradingClass business class.

127

Programmer’s Guide for .NET Chapter 11

Methods: The component offers methods to calculate:

� The probability of an event that is represented by a subset of the initial set of
elementary events

� The probability of the union of two events

� The probability of the intersection of two events

� The probability of the complementary of an event

Exceptions: The component will signal the user with the two following exceptions,
if any mishaps take place:

� ProbabilityNotSetException - thrown if any of the previous methods are
called before actually providing the two sets for the component to work with

� IncompatibleEventException - thrown if the specified event is not a subset
of the initial family of elementary events

Example Suppose there are two unknown events, A and B, and only three out of
following four probabilities are known:

� the probability of A

� the probability of B

� the probability of union (i.e. A ∪ B)

� the probability of intersection (i.e. A ∩ B)

By applying methods related to the implementation of Bayes Theorem the fourth
probability can be calculated.

2. Discrete Probability Distributions and Random Variables

This component also provides methods for dealing with random variables. A ran-
dom variable represents a function, which associates a real number to each and every
elementary event in a simple space S. For a swifter approach, we consider the simple
space S to be the set {1, 2, 3, . . . , k, . . .}. Thus, to work with a random variable, you
will only send to the component the function and the probability distribution, that are
represented by sets of real numbers.

Passing Random Variables: If you do not wish to pass the random variable each
time you call a method that uses it, the component will let you use, as an alternative,
a random variables table. You may choose to add random variables to this table at
the creation of the component, or later, using the AddRandomVariables method. The
created instance will also provide ways to insert and remove random variables from
this table. Each entry will be assigned an index by which every method will be able to
identify the random variables. This way of managing random variables is considerably
faster and more robust.

Methods: For one or more random variables you may calculate:

� The mean

128

Programmer’s Guide for .NET Chapter 11

� The variance

� The cumulative distribution function. This represents the probability of a
random variable to take a value below a given real number

� the expected value E[g(X)], where X is the random variable and g is some
function over X

� The covariance for two random variables

� The population correlation coefficient for two random variables

3. Basic Probability Laws and Simplifying Expressions

These methods are used to calculate basic probability laws for the union and the
intersection of two or more events. The symbols used inside the component are: “+”
for union, “∗” for intersection and A, B, C, . . . for events.

A very important feature of this component is the simplification of expressions involv-
ing random variables. These methods can simplify expressions involving the means,
variance, expected values, covariance and population coefficients of random variables.
Within the component we use the following notation:

� M - mean

� V - variance

� E - expected value

� C - covariance

� R - population coefficient

Within the component we will always refer to random variables by the remaining
upper-case letters A,B,D,

Notation: We denote the following operations applied to the random variables A
and B:

� mean →M [A]

� variance → V [A]

� expected value → E[A]

Where A and B, are two random variables we have:

� covariance → C[A, B]

� population correlation coefficient → R[A, B]

We represent the following operators as:

� + for addition

� − for substraction

� ∗ for multiplication

� / for division

129

Programmer’s Guide for .NET Chapter 11

We denote real constants by lower letter a, b, c, Note that you can only use high
level brackets. If you do not abide by this notation then the corresponding method
will not return the correct result.

130

Chapter 12

Examples

This chapter is still under development. Please refer to the .NET client examples directories
within this package for C# source code examples.

131

Chapter 13

Guide to WebCab Components

13.1 The Company

WebCab is a privately owned British company that has built business solutions since its
inception in 1999. We continue to refine and develop our Mathematical and Financial
Framework which we have implemented on the Office, J2SE, J2EE, Delphi, COM and
.NET platforms.

13.2 Presentation of Products

Our aim is to provide good quality, useful information to help you decide which component
best suits your development needs. WebCab is committed to honesty and realism when
presenting our products. In order to achieve this a detailed, clear and factual style for
presentation is adopted within our documentation and marketing material.

13.3 Supported Clients, IDEs, Containers and DBMSs

By supporting all major development, server and client side technologies we preserve the
developers flexibility in making tool and architecture decisions. In particular, each product
contains detailed examples and advice concerning the integration and use of our modules
within existing development tool and infrastructure platforms. In short, our documenta-
tion provides the information that the developer needs to get their applications up and
running as quickly and as easily as possible.

We detail exactly how the developer can use the .NET Component, COM Component
and XML Web service contained within this product with the following technologies:

� Client containers - Internet Explorer, Mozilla, Microsoft Office

� IDEs - Microsoft’s Visual Studio .NET (incl. Visual C.NET, Visual Basic .NET,
Visual C++.NET), Microsoft’s Visual Studio 6 (incl. Visual C++, Visual Basic),

132

Guide to WebCab Components Chapter 13

Borland’s C++ Builder (incl. C++ 2005, C++BuildX), .NET Framework SDK,
Office’s Visual Basic Editor

� Client Side Technologies - Application Clients, ASP.NET, C#, VB.NET, C++.NET

� XML Web services - Implemented in C#, VB.NET

� DBMS - Oracle, IBM DB2, SQL Server, Sybase, MySQL

� Platforms - Windows 2003/XP/2000/NT/9x

For these technologies we include all installation scripts and template examples which will
help the developer quickly and easily assemble their multi-tier enterprise application.

13.4 Transparent Functionality

All technical and business intelligence incorporated within our products is described within
the associated documentation. This allows the developer to see the nature of the method-
ology implemented within our proprietary algorithms.

13.5 Company Culture and Activity

WebCab Components is focused solely on the production of high quality software modules
within our Financial and Mathematical Framework. The WebCab team contains a wide
range of expertise and experience from the academic, investment banking and software
development worlds.

Within the company there exists significant internal competitive pressures with constant
peer review and evaluation, resulting in higher quality products, which adhere to high
professional standards and offer extended functionality.

13.6 Product Life cycle

We continuously add value to our products by evolving them according to new .NET
Framework specifications, customer feedback and market demands. We give particular
emphasis to incorporating our clients suggested modifications and additions into our prod-
uct development cycle.

13.7 Support, Warranty and Upgrades

WebCab warrants that each component will perform substantially in accordance with the
accompanying written material. We provide with all our products without charge sixty
(60) days product support services including fixing bugs, compatibility issues and other
technical support issues.

133

Guide to WebCab Components Chapter 13

All maintenance updates (including service packs) will be distributed free of additional
license cost.

Dr Ben Fairfax

Founder and CEO

WebCab Components - From Developer, To Developer

.NET and all .NET-based marks are trademarks or registered trademarks of Microsoft Corporation,

Inc. in the U.S. and other countries.

134

	Preface
	Introduction
	Product Description
	Overview
	Details

	Package Details
	Prerequisites and Compatibility
	System Requirements
	Compatibility

	Where do I Start?
	What Type of User Are You?
	What Do I Need to Install and Where Can I Get It?
	Installing the IIS Web server
	What Do I Need if I am Using Windows 2003?

	Deploying the .NET Service
	Deploying a Component
	Deploying an XML Web Service

	Using the DLLs inside an IDE
	Using the DLL within a Visual Studio .NET project
	Using the DLL within a Borland's C# Builder project

	Client Examples
	Running the Console Client Example
	ASP.NET Client Example
	XML Web service examples

	Testing the Component
	Accessing the Online ASP.NET Demo
	Online XML Web service examples
	Using .NET Web Service Studio

	Statistics Documentation
	Data Presentation
	Frequency Tables
	Relative Frequency Table
	Cumulative Frequency Tables

	Basic Statistics
	Measures of Centrality
	Measures of Dispersion
	Measures of Relative Location

	Grouped Data
	Example of a Grouped Data Set
	Quantitative Measures of Grouped Data

	Discrete Probability Documentation
	Random Variables
	Examples of Random Variables
	Associated Probability Distribution
	Cumulative Distribution Function
	Expected Values of a Random Variable
	Variance of a Random Variable

	Discrete Probability
	Calculating the Discrete Probability

	Basic Laws of Probability
	The Addition Law
	Conditional Probability
	Complementary Events Probability

	Correlation and Regression Documentation
	Overview
	Significant Figures
	Linear Correlation
	Pearson's Product Moment Correlation Coefficient
	Significance Test for Pearson's Coefficient, r

	Non-parametric or Rank Correlation
	Spearman's Rank Correlation Test
	Kendall's Rank Correlation Coefficient

	Linear Regression
	The Least Squares Regression Line
	The Least Square Regression Line for y on x
	Average of the Regression Error

	Prediction Intervals for the Conditional Mean
	The Coefficient of Determination
	Residuals

	Standard Probability Distributions Documentation
	Discrete Probability Distributions
	Binomial Distribution
	Poisson Distribution
	The Poisson approximation to the Binomial Distribution

	Continuous Probability Distributions
	Normal Distribution
	Standard Normal Distribution
	The Normal approximation to a Binomial Distribution
	Binomial Proportions
	Lognormal Distribution
	Pareto Distribution
	Uniform Probability Distribution
	Exponential Probability Distribution

	Supplementary Material on Extended Trapezoidal rule

	Hypothesis Testing Documentation
	Confidence intervals
	Confidence intervals for large or small samples
	One or two sided confidence intervals
	Confidence intervals with one or two samples
	Confidence intervals for the mean and percentages

	Hypothesis (or significance) testing
	Hypothesis tests for means or percentages
	Hypothesis testing with one or two samples
	Hypothesis testing with large or small samples (t-distribution)

	Types of error
	Conclusions

	Programmer's Guide for Microsoft Office
	Developing with VBA from Office
	Open the Visual Basic Editor
	Add a Code Module
	Declare a Subroutine
	Add a Reference to This Product
	Declare a Class Instance Variable
	Create a Class Instance
	Call a Class Method
	Display the Method Result
	Run the Subroutine
	A Generic VBA Example for Office

	Integrating with Microsoft Excel
	Open the Visual Basic Editor
	Add a Code Module
	Declare a Function
	Add a Reference to This Product
	Declare a Class Instance Variable
	Create a Class Instance
	Call a Class Method
	Store the Method Result as a Function Return Value
	Insert the Function in your Worksheet

	Programmer's Guide for Visual Studio 6
	Developing with Visual Basic 6
	Add a Reference to This Product
	Declare a Class Instance Variable
	Create a Class Instance
	Call a Class Method
	A Generic Visual Basic Example

	Developing with Visual C++ 6
	Open a New or Existing Project
	Add All COM Specific 'include' Declarations
	Call "CoInitialize"
	Import the Type Library for this Product
	Connect to a COM Server
	Declare the Parameter Types and Values
	Declare the Return Type
	Call the Method
	Call "CoUninitialize"
	A Generic Visual C++ Example

	Programmer's Guide for Borland C++ Builder
	Developing with Borland C++ Builder
	Open a New or Existing Project
	Add all COM Specific "Include" Declarations
	Call "CoInitialize"
	Create a Class Instance
	Obtain a Method ID
	Declare the Parameter Values and Types
	Declare the Return Type
	Call the Method
	Call "CoUninitialize"
	A Generic Borland C++ Builder Example

	Programmer's Guide for .NET
	Developing with .NET Class Libraries
	Stand-alone C# .NET Applications

	Developing with XML Web Services
	Deploying the XML Web Services
	Writing XML Web Service Clients
	Writing Console XML Web Service Clients
	Importing Web services into Visual Studio .NET projects

	Connecting to a Database with our .NET Libraries
	Overview
	The ADO Mediator

	Statistics Module Functionality
	Discrete Probability Module Functionality

	Examples
	Guide to WebCab Components
	The Company
	Presentation of Products
	Supported Clients, IDEs, Containers and DBMSs
	Transparent Functionality
	Company Culture and Activity
	Product Life cycle
	Support, Warranty and Upgrades

