ENGLISH

INTRODUCTION

The TransLT library offers the following functionalities:

Supported coordinate operations:

Coordinate transformation can be done based on a transformation model that is taken from a file, a model that contains operations with coordinates defined as transformation steps. If the transformation model supports the inverse calculation then the transformation can be done in reverse.

To create files with transformation models, we recommend that you use the main TransLT application where you can create and test transformation models. Also in the main application you can use the EPSG database to automatically create transformation steps. For this it is necessary to have a minimum of knowledge about coordinate reference systems (CRS) and about possible coordinate operations (CooOp) between these systems. Another important factor is the accuracy of the transformation that you need to know before making a new transformation model. It would be useful to have one or more points with coordinates in both systems to test the newly created model. If you can't handle it, please write to us at support@3dspace.ro, and if possible we will create the transformation model for you.

In the "Examples" folder you will find information about the implementation in Delphi and in Visual Studio, including the compiled executables. Also here you will find examples with some of the supported file types (transformation models, files with coordinates, files with graphic entities, etc.).

In the "Demo_TransLT_Library.exe" test application window you have exemplified how to make the settings in the "Language settings" and "Model properties" section and four usage examples in the sections: "Transformation test file", "Test for one point", "Test for entities file" and "Define entities, transform points and draw to Google Earth".

Note on the choice of operating system 32bit or 64bit: For 32-bit operating systems TransLT.Win32.dll library operate with 80 bits (10 bytes) allocated to real numbers, about 19 to 20 significant digits and for 64-bit operating systems TransLT.Win64.dll library operate with 64 bits (8 bytes) allocated to real numbers, about 15 to 16 significant digits.

 

Supported Conversions and Transformations

Coordinates conversions

Type of source coordinates   Type of target coordinates

Geographical coordinates (φ,λ,h)

Geocentric cartesian coordinates (X,Y,Z)

Geocentric cartesian coordinates (X,Y,Z)

Geographical coordinates (φ,λ,h)

Geographical coordinates (φ,λ)

Plane coordinates (N,E) according to selected projection

Plane coordinates (N,E)

Geographical coordinates (φ,λ) according to selected projection

Projections

No. Projection name Applicable on
ellipsoid
Applicable on
spheroid
Reversible
Cylindrical Projections

1

Cassini-Soldner

2

Central Cylindrical

3

Cylindrical Equal Area (Normal)

4

Cylindrical Equal Area (Oblique)

5

Cylindrical Equal Area (Transverse)

6

Equidistant Cylindrical

7

Gall Stereographic Cylindrical

8

Hotine Oblique Mercator (Variant A)

9

Hotine Oblique Mercator (Variant B)

10

Hyperbolic Cassini-Soldner

11

Laborde for Madagascar

12

Mercator (1SP) (Variant A)

13

Mercator (2SP) (Variant B)

14

Mercator (2SP) (Variant C)

15

Miller Cylindrical

16

Popular Visualisation Pseudo Mercator

17

Swiss. Obl. Mercator

18

Transverse Mercator

19

Transverse Mercator (South Orientated)

20

Transverse Mercator Zoned Grid System

21

Tunisia Mining Grid

22

Universal Transverse Mercator (UTM)

Pseudocylindrical Projections

23

Collignon

24

Eckert I

25

Eckert II

26

Eckert III

27

Eckert IV

28

Eckert V

29

Eckert VI

30

Equal Earth

31

Fahey (Modified Gall)

32

Foucaut Sinusoidal

33

Foucaut Stereographic Equivalent

34

Hatano Asymmetrical Equal Area

35

Kavraiskiy V

36

Kavraiskiy VII

37

Loximuthal

38

McBride-Thomas Flat-Polar Parabolic (No. 5)

39

McBryde-Thomas Flat-Polar Quartic (No. 4)

40

McBryde-Thomas Flat-Polar Sine (No. 1)

41

McBryde-Thomas Flat-Polar Sinusoidal (No. 3)

42

McBryde-Thomas Flat-Pole Sine (No. 2)

43

Mollweide

44

Nell

45

Nell-Hammer

46

Pseudo Plate Carrée

47

Putnins P1

48

Putnins P2

49

Putnins P3

50

Putnins P3p

51

Putnins P4 (Craster Parabolic)

52

Putnins P4p

53

Putnins P5

54

Putnins P5p

55

Putnins P6

56

Putnins P6p

57

Quartic Authalic

58

Sinusoidal (Sanson-Flamsteed)

59

Wagner I (Kavraiskiy VI)

60

Wagner II

61

Wagner III

62

Wagner IV

63

Wagner V

64

Wagner VI

65

Werenskiold I

66

Winkel I

67

Winkel II

Conic Projections

68

Albers Equal Area

69

Bipolar conic of western hemisphere

70

Equidistant Conic

71

Euler (Equidistant Conic)

72

Krovak Oblique Conformal Conic

73

Krovak Oblique Conformal Conic (North Orientated)

74

Krovak Oblique Conformal Conic Modified

75

Krovak Oblique Conformal Conic Modified (North Orientated)

76

Lambert Conformal Conic (1SP)

77

Lambert Conformal Conic (1SP variant B)

78

Lambert Conformal Conic (1SP) West Orientated

79

Lambert Conformal Conic (2SP)

80

Lambert Conformal Conic (2SP) Belgium

81

Lambert Conformal Conic (2SP) Michigan

82

Lambert Conic Near-Conformal

83

Murdoch I (Equidistant Conic)

84

Murdoch II

85

Murdoch III (Equidistant Conic, minimum error)

86

Perspective Conic

87

Tissot

88

Vitkovskiy I (Equidistant Conic)

Pseudoconic Projections

89

Bonne (South Orientated)

90

Bonne (Werner for lat.1sp = 90°)

Polyconic Projections

91

American Polyconic

92

International Map of the World (Modified Polyconic)

Azimuthal Projections

93

Azimuthal Equidistant

94

Colombia Urban Projection

95

Gnomonic

96

Guam (Azimuthal Equidistant)

97

Lambert Azimuthal Equal Area

98

Lee Oblated Stereographic

99

Miller Oblated Stereographic

100

Mod. Stererographics of 48 U.S.

101

Mod. Stererographics of 50 U.S.

102

Mod. Stererographics of Alaska

103

Modified Azimuthal Equidistant (for Micronesia)

104

Oblique Stereographic

105

Orthographic

106

Polar Stereographic Variant A (Universal)

107

Polar Stereographic Variant B

108

Polar Stereographic Variant C

109

Stereographic (J.P. Snyder formulas)

110

Topocentric local

111

Vertical Perspective

112

Vertical Perspective (Orthographic case)

Miscellaneous Projections

113

New Zealand Map Grid

114

Van der Grinten

Transformations with parameters

Transformation type Method No.
parameters
Invertible
parameters
Reversible

Transformation 1D

3D plane rotation

5

Translate to elevation

1

Transformation 2D

2D Helmert conformal transformation

4

2D Helmert conformal transformation with rotation origin

6

2D orthogonal affine transformation

5

2D non-orthogonal affine transformation

6

Transformation 3D

3D Helmert, Bursa-Wolf method, conformal transformation

7

3D Helmert, Molodenski-Bedekas, conformal transformation

10

3D Helmert conformal transformation

7

3D affine transformation

8

3D affine transformation

9

3D affine transformation with rotation origin

12

Time-dependent 3D transformation, Bursa-Wolf method

15

Time-dependent 3D transformation, Helmert conformal

15

Polynomials transformations

Method name Polynomials degree Reversible

General polynomial

2

3

4

6

13

Reversible polynomial

2

3

4

6

13

Complex polynomial

3

4

Madrid to ED50 polynomial

Grid files

File
extension
Format File description Applied to

.94

Binary

Geoid model VERTCON format

h

.asc

ASCII

Geoid model ASC format

h

.b

Binary

NADCON 5, GEOCON, GEOCON 11 or VERTCON 3.0 format

(φ,λ,h), (φ,λ) or h

.bin

Binary

Geoid model NGS format

h

.byn

Binary

Geoid model GSD format

h

.csv

ASCII

Geoid model NZLVD (New Zealand) or BEV AT (Austria) format

h

.dat

Binary

NTv1 format

(φ, λ)

.dat

ASCII

Geoid model DAT format

h

.ggf

Binary

Geoid model Trimble GGF format

h

.grd

Binary

ANCPI 1D or 2D format (Romania)

(N, E) or h

.grd

ASCII

EGM96 geoid model, NGA format

h

.gri

ASCII

Geoid model Gravsoft (OSGM15) format

h

.gsb

Binary

NTv2 format, files with multiple grids that cover more areas, the gridscan have sub-grids attached

(φ, λ) or h

.gsf

ASCII

Geoid model Carlson SurvCE GSF format

h

.gtx

Binary

Geoid model GTX format

h

.gvb

Binary

Point motion NTv2_Vel format, files with multiple grids that cover more areas, the gridscan have sub-grids attached

(φ, λ, h)

.gz

Archive

EGM2008 geoid model, NGA format

h

.las / .los

Binary

NADCON format

(φ, λ)

.lla

ASCII

Latitude and longitude corrections in PROJ4 format

(φ, λ)

.mnt

ASCII

IGN with MNT format

(φ, λ) or h

.sid

ASCII

Geoid model NZGV format

h

.txt

ASCII

IGN with TXT format

(φ, λ) or h

.txt

ASCII

OSTN02/OSGM02 or OSTN15/OSGM15 1D or 3D format

(N,E,H), (N,E) or H

.txt

ASCII

Geoid model CING11 format

h

gugik*.txt

ASCII

GUGiK PL TXT format

(φ, λ, h) or h

.isg.txt

ASCII

Geoid model ISG format

h

.zip

Archive

Deformation model NZGD2000 format

(φ,λ,h), (φ,λ) or h

Grid interpolation methods: Bilinear, Bicubic spline and Biquadratic.

Offset methods

Method name Applied to Reversible

Longitude rotation

λ

Vertical Offset

h

Vertical Offset and Slope

h

Geographic 2D offsets

(φ, λ)

Geographic 2D with Height Offsets

(φ, λ, h)

Geographic 3D offsets

(φ, λ, h)

Geographic 3D to 2D conversion

h = 0.0

Geographic 2D axis order reversal

(φ, λ)

Geographic 3D axis order change

(φ, λ)

Change of vertical axis direction

h

Change of horizontal axes directions

(φ, λ), (N, E)

Change of all axes directions

(N, E, H), (X, Y, Z)

Change of vertical axis unit

h

Change of horizontal axes units

(φ, λ), (N, E)

Change of all axes units

(N, E, H), (X, Y, Z)

Points motion (ellipsoidal)

(φ, λ, h)

Change zero-tide height to mean-tide height

h

Predefined constants and functions for transformations with own formulas

Name Description Example

pi

Pythagorean number pi = 3.141592655...

e

Euler number e = 2.71828182...

abs

absolute value

abs(-1.0) = 1.0

abs(1.0) = 1.0

sqrt

square root

sqrt(2.0) = 1.41421356...

pow(B,n)

raises base B to power n

pow(25,1.5) = 125.0

ln

natural logarithm

ln(e) = 1.0

sin

sine calculated for angles in radians

sin(pi/2) = 1.0

cos

cosine calculated for angles in radians

cos(pi/2) = 0.0

tan

tangent calculated for angles in radians

tan(pi/4) = 1.0

asin

arcsine, the return value will fall in the range [-pi/2, pi/2]

asin(1.0) = pi/2

acos

arccosine, the return value will fall in the range [0, pi/2]

acos(0.0) = pi/2

atan

arctangent, the return value will fall in the range [-pi/2, pi/2]

atan(1.0) = pi/4

atan2(dy,dx)

arctangent angle and quadrant, the return value will fall in the range [-pi, pi](all quadrants)

atan2(-5.0,0.0) = -pi/2

sinh

hyperbolic sine

sinh(ln(2.0)) = 0.75

cosh

hyperbolic cosine

cosh(ln(2.0)) = 1.25

tanh

hyperbolic tangent

tanh(ln(2.0)) = 0.6

asinh

hyperbolic arcsine

asinh(0.75) = ln(2.0)

acosh

hyperbolic arccosine

acosh(1.25) = ln(2.0)

atanh

hyperbolic arctangent

atanh(0.6) = ln(2.0)

rtod

conversion from radians to decimal degrees

rtod(pi) = 180.0

dtor

conversion from decimal degrees to radians

dtor(180.0) = pi