INTRODUCTION
The TransLT library offers the following functionalities:
Supported coordinate operations:
Coordinate transformation can be done based on a transformation model that is taken from a file, a model that contains operations with coordinates defined as transformation steps. If the transformation model supports the inverse calculation then the transformation can be done in reverse.
To create files with transformation models, we recommend that you use the main TransLT application where you can create and test transformation models. Also in the main application you can use the EPSG database to automatically create transformation steps. For this it is necessary to have a minimum of knowledge about coordinate reference systems (CRS) and about possible coordinate operations (CooOp) between these systems. Another important factor is the accuracy of the transformation that you need to know before making a new transformation model. It would be useful to have one or more points with coordinates in both systems to test the newly created model. If you can't handle it, please write to us at support@3dspace.ro, and if possible we will create the transformation model for you.
In the "Examples" folder you will find information about the implementation in Delphi and in Visual Studio, including the compiled executables. Also here you will find examples with some of the supported file types (transformation models, files with coordinates, files with graphic entities, etc.).
In the "Demo_TransLT_Library.exe" test application window you have exemplified how to make the settings in the "Language settings" and "Model properties" section and four usage examples in the sections: "Transformation test file", "Test for one point", "Test for entities file" and "Define entities, transform points and draw to Google Earth".
Note on the choice of operating system 32bit or 64bit: For 32-bit operating systems TransLT.Win32.dll library operate with 80 bits (10 bytes) allocated to real numbers, about 19 to 20 significant digits and for 64-bit operating systems TransLT.Win64.dll library operate with 64 bits (8 bytes) allocated to real numbers, about 15 to 16 significant digits.
Supported Conversions and Transformations
Type of source coordinates | Type of target coordinates | |
Geographical coordinates (φ,λ,h) |
→ |
Geocentric cartesian coordinates (X,Y,Z) |
Geocentric cartesian coordinates (X,Y,Z) |
→ |
Geographical coordinates (φ,λ,h) |
Geographical coordinates (φ,λ) |
→ |
Plane coordinates (N,E) according to selected projection |
Plane coordinates (N,E) |
→ |
Geographical coordinates (φ,λ) according to selected projection |
No. | Projection name |
Applicable on ellipsoid |
Applicable on spheroid |
Reversible |
Cylindrical Projections | ||||
---|---|---|---|---|
1 |
Cassini-Soldner |
√ |
√ |
√ |
2 |
Central Cylindrical |
√ |
√ |
|
3 |
Cylindrical Equal Area (Normal) |
√ |
√ |
√ |
4 |
Cylindrical Equal Area (Oblique) |
√ |
√ |
√ |
5 |
Cylindrical Equal Area (Transverse) |
√ |
√ |
√ |
6 |
Equidistant Cylindrical |
√ |
√ |
√ |
7 |
Gall Stereographic Cylindrical |
√ |
√ |
|
8 |
Hotine Oblique Mercator (Variant A) |
√ |
√ |
√ |
9 |
Hotine Oblique Mercator (Variant B) |
√ |
√ |
√ |
10 |
Hyperbolic Cassini-Soldner |
√ |
√ |
|
11 |
Laborde for Madagascar |
√ |
√ |
√ |
12 |
Mercator (1SP) (Variant A) |
√ |
√ |
√ |
13 |
Mercator (2SP) (Variant B) |
√ |
√ |
√ |
14 |
Mercator (2SP) (Variant C) |
√ |
√ |
√ |
15 |
Miller Cylindrical |
√ |
√ |
|
16 |
Popular Visualisation Pseudo Mercator |
√ |
√ |
√ |
17 |
Swiss. Obl. Mercator |
√ |
√ |
√ |
18 |
Transverse Mercator |
√ |
√ |
√ |
19 |
Transverse Mercator (South Orientated) |
√ |
√ |
√ |
20 |
Transverse Mercator Zoned Grid System |
√ |
√ |
√ |
21 |
Tunisia Mining Grid |
√ |
√ |
√ |
22 |
Universal Transverse Mercator (UTM) |
√ |
√ |
√ |
Pseudocylindrical Projections | ||||
23 |
Collignon |
√ |
√ |
|
24 |
Eckert I |
√ |
√ |
|
25 |
Eckert II |
√ |
√ |
|
26 |
Eckert III |
√ |
√ |
|
27 |
Eckert IV |
√ |
√ |
|
28 |
Eckert V |
√ |
√ |
|
29 |
Eckert VI |
√ |
√ |
|
30 |
Equal Earth |
√ |
√ |
√ |
31 |
Fahey (Modified Gall) |
√ |
√ |
|
32 |
Foucaut Sinusoidal |
√ |
√ |
|
33 |
Foucaut Stereographic Equivalent |
√ |
√ |
|
34 |
Hatano Asymmetrical Equal Area |
√ |
√ |
|
35 |
Kavraiskiy V |
√ |
√ |
|
36 |
Kavraiskiy VII |
√ |
√ |
|
37 |
Loximuthal |
√ |
√ |
|
38 |
McBride-Thomas Flat-Polar Parabolic (No. 5) |
√ |
√ |
|
39 |
McBryde-Thomas Flat-Polar Quartic (No. 4) |
√ |
√ |
|
40 |
McBryde-Thomas Flat-Polar Sine (No. 1) |
√ |
√ |
|
41 |
McBryde-Thomas Flat-Polar Sinusoidal (No. 3) |
√ |
√ |
|
42 |
McBryde-Thomas Flat-Pole Sine (No. 2) |
√ |
√ |
|
43 |
Mollweide |
√ |
√ |
|
44 |
Nell |
√ |
√ |
|
45 |
Nell-Hammer |
√ |
√ |
|
46 |
Pseudo Plate Carrée |
√ |
√ |
√ |
47 |
Putnins P1 |
√ |
√ |
|
48 |
Putnins P2 |
√ |
√ |
|
49 |
Putnins P3 |
√ |
√ |
|
50 |
Putnins P3p |
√ |
√ |
|
51 |
Putnins P4 (Craster Parabolic) |
√ |
√ |
|
52 |
Putnins P4p |
√ |
√ |
|
53 |
Putnins P5 |
√ |
√ |
|
54 |
Putnins P5p |
√ |
√ |
|
55 |
Putnins P6 |
√ |
√ |
|
56 |
Putnins P6p |
√ |
√ |
|
57 |
Quartic Authalic |
√ |
√ |
|
58 |
Sinusoidal (Sanson-Flamsteed) |
√ |
√ |
√ |
59 |
Wagner I (Kavraiskiy VI) |
√ |
√ |
|
60 |
Wagner II |
√ |
√ |
|
61 |
Wagner III |
√ |
√ |
|
62 |
Wagner IV |
√ |
√ |
|
63 |
Wagner V |
√ |
√ |
|
64 |
Wagner VI |
√ |
√ |
|
65 |
Werenskiold I |
√ |
√ |
|
66 |
Winkel I |
√ |
√ |
|
67 |
Winkel II |
√ |
||
Conic Projections | ||||
68 |
Albers Equal Area |
√ |
√ |
√ |
69 |
Bipolar conic of western hemisphere |
√ |
√ |
|
70 |
Equidistant Conic |
√ |
√ |
√ |
71 |
Euler (Equidistant Conic) |
√ |
√ |
|
72 |
Krovak Oblique Conformal Conic |
√ |
√ |
√ |
73 |
Krovak Oblique Conformal Conic (North Orientated) |
√ |
√ |
√ |
74 |
Krovak Oblique Conformal Conic Modified |
√ |
√ |
√ |
75 |
Krovak Oblique Conformal Conic Modified (North Orientated) |
√ |
√ |
√ |
76 |
Lambert Conformal Conic (1SP) |
√ |
√ |
√ |
77 |
Lambert Conformal Conic (1SP variant B) |
√ |
√ |
√ |
78 |
Lambert Conformal Conic (1SP) West Orientated |
√ |
√ |
√ |
79 |
Lambert Conformal Conic (2SP) |
√ |
√ |
√ |
80 |
Lambert Conformal Conic (2SP) Belgium |
√ |
√ |
√ |
81 |
Lambert Conformal Conic (2SP) Michigan |
√ |
√ |
√ |
82 |
Lambert Conic Near-Conformal |
√ |
√ |
|
83 |
Murdoch I (Equidistant Conic) |
√ |
√ |
|
84 |
Murdoch II |
√ |
√ |
|
85 |
Murdoch III (Equidistant Conic, minimum error) |
√ |
√ |
|
86 |
Perspective Conic |
√ |
√ |
|
87 |
Tissot |
√ |
√ |
|
88 |
Vitkovskiy I (Equidistant Conic) |
√ |
√ |
|
Pseudoconic Projections | ||||
89 |
Bonne (South Orientated) |
√ |
√ |
√ |
90 |
Bonne (Werner for lat.1sp = 90°) |
√ |
√ |
√ |
Polyconic Projections | ||||
91 |
American Polyconic |
√ |
√ |
√ |
92 |
International Map of the World (Modified Polyconic) |
√ |
√ |
√ |
Azimuthal Projections | ||||
93 |
Azimuthal Equidistant |
√ |
√ |
√ |
94 |
Colombia Urban Projection |
√ |
√ |
√ |
95 |
Gnomonic |
√ |
√ |
|
96 |
Guam (Azimuthal Equidistant) |
√ |
√ |
|
97 |
Lambert Azimuthal Equal Area |
√ |
√ |
√ |
98 |
Lee Oblated Stereographic |
√ |
√ |
|
99 |
Miller Oblated Stereographic |
√ |
√ |
|
100 |
Mod. Stererographics of 48 U.S. |
√ |
√ |
|
101 |
Mod. Stererographics of 50 U.S. |
√ |
√ |
√ |
102 |
Mod. Stererographics of Alaska |
√ |
√ |
√ |
103 |
Modified Azimuthal Equidistant (for Micronesia) |
√ |
√ |
|
104 |
Oblique Stereographic |
√ |
√ |
√ |
105 |
Orthographic |
√ |
√ |
√ |
106 |
Polar Stereographic Variant A (Universal) |
√ |
√ |
√ |
107 |
Polar Stereographic Variant B |
√ |
√ |
√ |
108 |
Polar Stereographic Variant C |
√ |
√ |
√ |
109 |
Stereographic (J.P. Snyder formulas) |
√ |
√ |
√ |
110 |
Topocentric local |
√ |
√ |
√ |
111 |
Vertical Perspective |
√ |
√ |
|
112 |
Vertical Perspective (Orthographic case) |
√ |
√ |
|
Miscellaneous Projections | ||||
113 |
New Zealand Map Grid |
√ |
√ |
|
114 |
Van der Grinten |
√ |
√ |
Transformation type | Method |
No. parameters |
Invertible parameters |
Reversible |
Transformation 1D |
3D plane rotation |
5 |
|
√ |
Translate to elevation |
1 |
√ |
√ |
|
Transformation 2D |
2D Helmert conformal transformation |
4 |
√ |
√ |
2D Helmert conformal transformation with rotation origin |
6 |
|
√ |
|
2D orthogonal affine transformation |
5 |
|
√ |
|
2D non-orthogonal affine transformation |
6 |
√ |
√ |
|
Transformation 3D |
3D Helmert, Bursa-Wolf method, conformal transformation |
7 |
√ |
√ |
3D Helmert, Molodenski-Bedekas, conformal transformation |
10 |
|
|
|
3D Helmert conformal transformation |
7 |
√ |
√ |
|
3D affine transformation |
8 |
|
|
|
3D affine transformation |
9 |
|
|
|
3D affine transformation with rotation origin |
12 |
|
|
|
Time-dependent 3D transformation, Bursa-Wolf method |
15 |
√ |
√ |
|
Time-dependent 3D transformation, Helmert conformal |
15 |
|
√ |
Method name | Polynomials degree | Reversible |
General polynomial |
2 |
|
3 |
||
4 |
||
6 |
||
13 |
||
Reversible polynomial |
2 |
√ |
3 |
√ |
|
4 |
√ |
|
6 |
√ |
|
13 |
√ |
|
Complex polynomial |
3 |
|
4 |
||
Madrid to ED50 polynomial |
1 |
File extension |
Format | File description | Applied to |
.94 |
Binary |
Geoid model VERTCON format |
h |
.asc |
ASCII |
Geoid model ASC format |
h |
.b |
Binary |
NADCON 5, GEOCON, GEOCON 11 or VERTCON 3.0 format |
(φ,λ,h), (φ,λ) or h |
.bin |
Binary |
Geoid model NGS format |
h |
.byn |
Binary |
Geoid model GSD format |
h |
.csv |
ASCII |
Geoid model NZLVD (New Zealand) or BEV AT (Austria) format |
h |
.dat |
Binary |
NTv1 format |
(φ, λ) |
.dat |
ASCII |
Geoid model DAT format |
h |
.ggf |
Binary |
Geoid model Trimble GGF format |
h |
.grd |
Binary |
ANCPI 1D or 2D format (Romania) |
(N, E) or h |
.grd |
ASCII |
EGM96 geoid model, NGA format |
h |
.gri |
ASCII |
Geoid model Gravsoft (OSGM15) format |
h |
.gsb |
Binary |
NTv2 format, files with multiple grids that cover more areas, the gridscan have sub-grids attached |
(φ, λ) or h |
.gsf |
ASCII |
Geoid model Carlson SurvCE GSF format |
h |
.gtx |
Binary |
Geoid model GTX format |
h |
.gvb |
Binary |
Point motion NTv2_Vel format, files with multiple grids that cover more areas, the gridscan have sub-grids attached |
(φ, λ, h) |
.gz |
Archive |
EGM2008 geoid model, NGA format |
h |
.las / .los |
Binary |
NADCON format |
(φ, λ) |
.lla |
ASCII |
Latitude and longitude corrections in PROJ4 format |
(φ, λ) |
.mnt |
ASCII |
IGN with MNT format |
(φ, λ) or h |
.sid |
ASCII |
Geoid model NZGV format |
h |
.txt |
ASCII |
IGN with TXT format |
(φ, λ) or h |
.txt |
ASCII |
OSTN02/OSGM02 or OSTN15/OSGM15 1D or 3D format |
(N,E,H), (N,E) or H |
.txt |
ASCII |
Geoid model CING11 format |
h |
gugik*.txt |
ASCII |
GUGiK PL TXT format |
(φ, λ, h) or h |
.isg.txt |
ASCII |
Geoid model ISG format |
h |
.zip |
Archive |
Deformation model NZGD2000 format |
(φ,λ,h), (φ,λ) or h |
Grid interpolation methods: Bilinear, Bicubic spline and Biquadratic. |
Method name | Applied to | Reversible |
Longitude rotation |
λ |
√ |
Vertical Offset |
h |
√ |
Vertical Offset and Slope |
h |
√ |
Geographic 2D offsets |
(φ, λ) |
√ |
Geographic 2D with Height Offsets |
(φ, λ, h) |
√ |
Geographic 3D offsets |
(φ, λ, h) |
√ |
Geographic 3D to 2D conversion |
h = 0.0 |
√ |
Geographic 2D axis order reversal |
(φ, λ) |
√ |
Geographic 3D axis order change |
(φ, λ) |
√ |
Change of vertical axis direction |
h |
√ |
Change of horizontal axes directions |
(φ, λ), (N, E) |
√ |
Change of all axes directions |
(N, E, H), (X, Y, Z) |
√ |
Change of vertical axis unit |
h |
√ |
Change of horizontal axes units |
(φ, λ), (N, E) |
√ |
Change of all axes units |
(N, E, H), (X, Y, Z) |
√ |
Points motion (ellipsoidal) |
(φ, λ, h) |
√ |
Change zero-tide height to mean-tide height |
h |
√ |
Name | Description | Example |
pi |
Pythagorean number pi = 3.141592655... |
|
e |
Euler number e = 2.71828182... |
|
abs |
absolute value |
abs(-1.0) = 1.0 abs(1.0) = 1.0 |
sqrt |
square root |
sqrt(2.0) = 1.41421356... |
pow(B,n) |
raises base B to power n |
pow(25,1.5) = 125.0 |
ln |
natural logarithm |
ln(e) = 1.0 |
sin |
sine calculated for angles in radians |
sin(pi/2) = 1.0 |
cos |
cosine calculated for angles in radians |
cos(pi/2) = 0.0 |
tan |
tangent calculated for angles in radians |
tan(pi/4) = 1.0 |
asin |
arcsine, the return value will fall in the range [-pi/2, pi/2] |
asin(1.0) = pi/2 |
acos |
arccosine, the return value will fall in the range [0, pi/2] |
acos(0.0) = pi/2 |
atan |
arctangent, the return value will fall in the range [-pi/2, pi/2] |
atan(1.0) = pi/4 |
atan2(dy,dx) |
arctangent angle and quadrant, the return value will fall in the range [-pi, pi](all quadrants) |
atan2(-5.0,0.0) = -pi/2 |
sinh |
hyperbolic sine |
sinh(ln(2.0)) = 0.75 |
cosh |
hyperbolic cosine |
cosh(ln(2.0)) = 1.25 |
tanh |
hyperbolic tangent |
tanh(ln(2.0)) = 0.6 |
asinh |
hyperbolic arcsine |
asinh(0.75) = ln(2.0) |
acosh |
hyperbolic arccosine |
acosh(1.25) = ln(2.0) |
atanh |
hyperbolic arctangent |
atanh(0.6) = ln(2.0) |
rtod |
conversion from radians to decimal degrees |
rtod(pi) = 180.0 |
dtor |
conversion from decimal degrees to radians |
dtor(180.0) = pi |